К155ла3 описание. Описание микросхемы К155ЛА3. Что содержится в этом корпусе

💖 Нравится? Поделись с друзьями ссылкой

C 10.08.2019 по 07.09.2019 технический перерыв.
Приём посылок возобновим с 08.09.2019 г.

Приём микросхем (МС) 155, 172, 555, 565 серий, цены

На данной странице представлены микросхемы 155 серии и подобные в чёрном и коричневом пластиковых корпусах. Наша компания осуществляет приём микросхем других серий по высоким ценам от частных лиц на постоянной основе более 6 лет. Вы можете надёжно и безопасно для Вас.

Стоит отметить, что цена на 155 серию и другие подобные рассчитывается по весу микросхем, когда детали поступают в наш офис на оценку специалистам. Нам часто задают один и тот же вопрос: У меня есть примерно грамм 50 конденсаторов КМ, грамм 200-400 микросхем 155 серии и немного других деталей. Можно прислать их в посылке?

Отвечаем всем: Да, можно. Присылайте, сколько есть. Расчёт будет произведён всегда и в полном объёме. Наибольшую цену имеют микросхемы 565,555,155 серий с жёлтой (позолоченной) подложкой-пластиной внутри. Если Вы хотите получить максимальную выгоду от продажи, то каждую МС необходимо раскусывать и смотреть наличие жёлтой пластинки-подложки, так как и в 155,555 серий часто встречаются пустые микросхемы с белой подложкой внутри, вместо нужной, позолоченной подложки. На фотографиях ниже это будет показано.

Цена на микросхемы данных серий напрямую зависит от года выпуска, завода-изготовителя и условий приёмки (военная, гражданская и так далее).

Также МС 155, 172, 176, 555, 565 серий и других подобных серий перед отправкой в посылке Почтой России необходимо срубать с плат и только в таком виде, без самих плат, отправлять в нашу компанию. Так как отправка на платах ведёт к удорожанию посылки из-за большего веса и если в посылке будут отправлены только данные микросхемы на платах. Если плат с данными микросхемами (МС) немного, до 5-7 единиц (плат), то присылайте МС на платах как есть вместе с другими радиодеталями и компонентами.

Часто попадаются платы, где находятся часть микросхем с желтыми выводами в керамическом корпусе и часть микросхем 155 серии и подобных в чёрном пластиковом корпусе. Такие платы можно присылать как есть, не снимая деталей с плат.

Подсчёт в этом случае будет произведён после того, как наши специалисты демонтируют МС с плат. Керамику (белую, розовую), 133, 134 серии и подобные подсчитают поштучно, МС в чёрном пластиковом корпусе взвесят и сделают осмотр маркировок данных МС. Цена от этого не изменится в меньшую сторону.

Дополнительную информацию по микросхемам смотрите на следующих страницах:

Фото и цены на микросхемы

Внешний вид Маркировка/Цена Внешний вид Маркировка/Цена
К155ЛА2

Цена:
до 4000 руб./кг.

КР140УД8Б

Цена:
до 1000 руб./кг.

К155ИЕ7 част.желт.выводы

Цена:
до 4500 руб./кг.

К155ЛИ5

Цена:
до 1500 руб./кг.

К157УД1

Цена:
до 4000 руб./кг.

К155ЛЕ6

Цена:
до 800 руб./кг.

К118УН1В

Цена:
до 3800 руб./кг.

К1ЛБ194

Цена:
до 1500 руб./кг.

К174УР11

Цена:
до 4000 руб./кг.

КМ155ТМ5

Цена:
до 2200 руб./кг.

КР531КП7

Цена:
до 4000 руб./кг.

КС1804ИР1

Цена:
до 2300 руб./кг.

К555ИП8

Цена:
до 4100 руб./кг.

КР537РУ2

Цена:
до 850 руб./кг.

КР565РУ7

Цена:
до 6500 руб./кг.

К561РУ2

Цена:
до 700 руб./кг.

КР590КН2

Цена:
до 3000 руб./кг.

КР1021ХА4

Цена:
до 2750 руб./кг.

КР1533ИР23

Цена:
до 4000 руб./кг.

Микросхемы-смесь

Цена:
до 5000 руб./кг.

КР565РУ1 без част.желт.ног

Цена:
до 5500 руб./кг.

КР565РУ1 с част.желт.ногами

Цена:
до 4500 руб./кг.

К155КП1

Цена:
до 2000 руб./кг.

К155ИД3

Цена:
до 700 руб./кг.

К174ХА16

Цена:
до 3400 руб./кг.

КР580ИК80

Цена:
до 500 руб./кг.

КР573РФ5

Цена:
до 2500 руб./кг.

КР537РУ8

Цена:
до 3700 руб./кг.

К555ИП3

Цена:
до 4000 руб./кг.

КР572ПВ2

Цена:
до 500 руб./кг.

К561ИР6А

Цена:
до 2900 руб./кг.

К145ИК11П

Цена:
до 500 руб./кг.

К589ИР12

Цена:
до 3100 руб./кг.

КР581РУ3

Цена:
до 500 руб./кг.

Все права защищены 2012 - 2019г.

Все материалы данного сайта являются объектами авторского права (в том числе дизайн). Запрещается копирование, распространение, в том числе путём копирования на сайты в сети интернет или любое иное использование информации и объектов без предварительного согласия правообладателя.

Обращаем ваше внимание на то, что вся информация носит ознакомительный характер и ни при каких условиях не является публичной офертой, определяемой положениями Статьи 437 Гражданского кодекса РФ.

Микросхема К155ЛА3, как и ее импортный аналог SN7400(или просто -7400, без SN), содержат в себе четыре логических элемента (вентиля) 2И - НЕ. Микросхемы К155ЛА3 и 7400 являются аналогами с полным совпадением распиновки и очень близкими рабочими параметрами. Питание осуществляется через выводы 7(минус) и 14(плюс), стабилизированным напряжением от 4,75 до 5,25 вольт.

Микросхемы К155ЛА3 и 7400 созданы на базе ТТЛ, поэтому - напряжение 7 вольт является для них абсолютно максимальным . При превышении этого значения прибор очень быстро сгорает.
Схема расположения выходов и входов логических элементов (распиновка) К155ЛА3 выглядит вот, таким образом.

На рисунке ниже - электронная схема отдельного элемента 2И-НЕ микросхемы К155ЛА3.

Параметры К155ЛА3.

1 Номинальное напряжение питания 5 В
2 Выходное напряжение низкого уровня не более 0,4 В
3 Выходное напряжение высокого уровня не менее 2,4 В
4 Входной ток низкого уровня не более -1,6 мА
5 Входной ток высокого уровня не более 0,04 мА
6 Входной пробивной ток не более 1 мА
7 Ток короткого замыкания -18...-55 мА
8 Ток потребления при низком уровне выходного напряжения не более 22 мА
9 Ток потребления при высоком уровне выходного напряжения не более 8 мА
10 Потребляемая статическая мощность на один логический элемент не более 19,7 мВт
11 Время задержки распространения при включении не более 15 нс
12 Время задержки распространения при выключении не более 22 нс

Схема гератора прямоугольных импульсов на К155ЛА3.

Очень легко собирается на К155ЛА3 генератор прямоугольных импульсов. Для этого можно использовать любые два ее элемента. Схема может выглядеть вот так.

Импульсы снимаются между 6 и 7(минус питания) выводами микросхемы.
Для этого генератора частоту(f) в герцах можно расчитать по формуле f= 1/2(R1 *C1). Значения подставляются в Омах и Фарадах.

Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Знакомимся с цифровой микросхемой

Во второй части статьи было рассказано об условных графических обозначениях логических элементов и о функциях выполняемых этими элементами.

Для объяснения принципа работы были приведены контактные схемы выполняющие логические функции И, ИЛИ, НЕ и И-НЕ. Теперь можно приступить к практическому знакомству с микросхемами серии К155.

Внешний вид и конструктивное исполнение

Базовым элементом 155-й серии считается микросхема К155ЛА3. Она представляет собой пластмассовый корпус с 14-ю выводами, на верхней стороне которого нанесена маркировка и ключ, обозначающий первый вывод микросхемы.

Ключ представляет собой небольшую круглую метку. Если смотреть на микросхему сверху (со стороны корпуса), то отсчет выводов следует вести против часовой стрелки, а если снизу, то по часовой стрелке.

Чертеж корпуса микросхемы показан на рисунке 1. Такой корпус называется DIP-14, что в переводе с английского означает пластмассовый корпус с двухрядным расположением выводов. Многие микросхемы имеют большее число выводов и поэтому корпуса могут быть DIP-16, DIP-20, DIP-24 и даже DIP-40.

Рисунок 1. Корпус DIP-14.

Что содержится в этом корпусе

В корпусе DIP-14 микросхемы К155ЛА3 содержится 4 независимых друг от друга элемента 2И-НЕ. Единственное, что их объединяет это лишь общие выводы питания: 14-й вывод микросхемы это + источника питания, а вывод 7 - отрицательный полюс источника.

Чтобы не загромождать схемы лишними элементами, линии питания, как правило, не показываются. Не делается это еще и потому, что каждый из четырех элементов 2И-НЕ может находиться в разных местах схемы. Обычно на схемах просто пишут: «+5В подвести к выводам 14 DD1, DD2, DD3…DDN. -5В подвести к выводам 07 DD1, DD2, DD3…DDN.». отдельно расположенные элементы обозначаются как DD1.1, DD1.2, DD1.3, DD1.4. На рисунке 2 показано, что микросхема К155ЛА3 состоит из четырех элементов 2И-НЕ. Как уже говорилось во второй части статьи слева расположены входные выводы, справа - выходы.

Зарубежным аналогом К155ЛА3 является микросхема SN7400 и ее смело можно использовать для всех описанных ниже экспериментов. Если сказать точнее, то вся серия микросхем К155 является аналогом зарубежной серии SN74, поэтому продавцы на радиорынках предлагают именно ее.

Рисунок 2. Цоколевка микросхемы К155ЛА3.

Для проведения опытов с микросхемой понадобится на напряжение 5В. Проще всего такой источник сделать, применив микросхему стабилизатора К142ЕН5А или ее импортный вариант, который называется 7805. При этом вовсе необязательно мотать трансформатор, паять мостик, ставить конденсаторы. Ведь всегда найдется какой-нибудь китайский сетевой адаптер с напряжением 12В, к которому достаточно подсоединить 7805, как показано на рисунке 3.

Рисунок 3. Простой источник питания для опытов.

Для проведения опытов с микросхемой понадобится сделать небольших размеров макетную плату. Она представляет собой кусок гетинакса, стеклотекстолита или другого похожего изоляционного материала размерами 100*70 мм. Подойдет для подобных целей даже простая фанера или плотный картон.

Вдоль длинных сторон платы следует укрепить облуженные проводники, толщиной около 1,5 мм, через которые к микросхемам будет подаваться питание (шины питания). Между проводниками по всей площади макетной платы следует просверлить отверстия диаметром не более 1 мм.

При проведении опытов в них будет можно вставлять отрезки луженого провода, к которым будут припаиваться конденсаторы, резисторы и прочие радиодетали. По углам платы следует сделать невысокие ножки, это даст возможность размещать провода снизу. Конструкция макетной платы показана на рисунке 4.

Рисунок 4. Макетная плата.

После того, как макетная плата будет готова, можно приступать к опытам. Для этого на ней следует установить хотя бы одну микросхему К155ЛА3: выводы 14 и 7 припаять к шинам питания, а остальные выводы согнуть так, чтобы они прилегали к плате.

Прежде, чем начинать опыты следует проверить надежность пайки, правильность подключения питающего напряжения (подключение напряжения питания в обратной полярности может вывести микросхему из строя), а также проверить, нет ли замыкания между соседними выводами. После этой проверки можно включать питание и приступать к опытам.

Для проведения измерений лучше всего подойдет , входное сопротивление которого не менее 10Ком/В. Такому требованию вполне удовлетворяет любой тестер, даже дешевый китайский.

Почему лучше стрелочный? Потому, что, наблюдая за колебаниями стрелки, можно заметить импульсы напряжения, конечно достаточно низкой частоты. Цифровой мультиметр такой способностью не обладает. Все измерения должны проводиться относительно «минуса» источника питания.

После того, как питание включено, померяйте напряжение на всех выводах микросхемы: на входных выводах 1 и 2, 4 и 5, 9 и 10, 12 и 13 напряжение должно быть 1,4В. А на выходных выводах 3, 6, 8, 11 около 0,3В. Если все напряжения находятся в указанных пределах, то микросхема исправна.

Рисунок 5. Простые опыты с логическим элементом.

Проверку работы логического элемента 2И-НЕ можно начать, например, с первого элемента. Его входные выводы 1 и 2, а выход 3. Для того, чтобы подать на вход сигнал логического нуля достаточно этот вход просто подсоединить к минусовому (общему) проводу источника питания. Если же на вход требуется подать логическую единицу, то этот вход следует подключить к шине +5В, но не напрямую, а через ограничительный резистор сопротивлением 1…1,5КОм.

Предположим, что мы соединили вход 2 с общим проводом,- тем самым, подав на него логический нуль, а на вход 1 подали логическую единицу, как только что было указано через ограничительный резистор R1. Это соединение показано на рисунке 5а. Если при таком подключении измерить напряжение на выходе элемента, то вольтметр покажет 3,5…4,5В, что соответствует логической единице. Логическую же единицу даст измерение напряжения на выводе 1.

Это полностью совпадает с тем, что было показано во второй части статьи на примере релейно - контактной схемы 2И-НЕ. По результатам проведенных измерений можно сделать следующий вывод: когда на одном из входов элемента 2И-НЕ высокий уровень, а на другом низкий, на выходе обязательно присутствует высокий уровень.

Далее проделаем следующий опыт - подадим единицу на оба входа сразу, как указано на рисунке 5б, но один из входов, например 2, соединим с общим проводом с помощью проволочной перемычки. (Для подобных целей лучше всего использовать обычную швейную иголку, припаянную на гибкий проводок). Если сейчас померить напряжение на выходе элемента, то, как и в предыдущем случае, там будет логическая единица.

Не прерывая измерения, уберем проволочную перемычку, - вольтметр покажет высокий уровень на выходе элемента. Это полностью соответствует логике работы элемента 2И-НЕ, в чем можно убедиться, обратившись к контактной схеме во второй части статьи, а также посмотрев в таблицу истинности, показанную там же.

Если теперь этой перемычкой замыкать периодически на общий провод любой из входов, имитируя подачу низкого и высокого уровня, то с помощью вольтметра на выходе можно обнаружить импульсы напряжения - стрелка будет колебаться в такт касаниям перемычкой входа микросхемы.

Из проведенных опытов можно сделать следующие выводы: напряжение низкого уровня на выходе появится лишь в том случае, когда на обоих входах присутствует высокий уровень, то есть по входам выполняется условие 2И. Если же хоть на одном из входов присутствует логический нуль, на выходе имеется логическая единица, можно повторить, что логика работы микросхемы полностью соответствует логике работы контактной схемы 2И-НЕ, рассмотренной во .

Вот тут уместно проделать еще один опыт. Смысл его в том, чтобы отключить все входные выводы, просто оставить их в «воздухе» и померить выходное напряжение элемента. Что там будет? Правильно, там будет напряжение логического нуля. Это говорит о том, что неподключенные входы логических элементов эквивалентны входам с поданной на них логической единицей. Об этой особенности забывать не следует, хотя неиспользуемые входы, как правило, рекомендуется куда-нибудь подключать.

На рисунке 5в показано как логический элемент 2И-НЕ можно превратить просто в инвертор. Для этого достаточно соединить вместе оба его входа. (Даже если входов будет четыре или восемь, подобное соединение вполне допустимо).

Чтобы убедиться в том, что сигнал на выходе имеет значение противоположное сигналу на входе, достаточно входы с помощью проволочной перемычки соединить с общим проводом, то есть подать на вход логический нуль. При этом вольтметр, присоединенный к выходу элемента, покажет логическую единицу. Если же перемычку разомкнуть, то на выходе появится напряжение низкого уровня, что как раз противоположно входному.

Этот опыт говорит о том, что работа инвертора полностью эквивалентна работе контактной схемы НЕ, рассмотренной во второй части статьи. Таковы в целом чудесные свойства микросхемы 2И-НЕ. Чтобы ответить на вопрос, как же все это происходит, следует рассмотреть электрическую схему элемента 2И-НЕ.

Внутреннее устройство элемента 2И-НЕ

До сих пор мы рассматривали логический элемент на уровне его графического обозначения, принимая его, как говорят в математике за «черный ящик»: не вдаваясь в подробности внутреннего устройства элемента, мы исследовали его реакцию на входные сигналы. Теперь настало время изучить внутреннее устройство нашего логического элемента, которое показано на рисунке 6.

Рисунок 6. Электрическая схема логического элемента 2И-НЕ.

Схема содержит четыре транзистора структуры n-p-n, три диода и пять резисторов. Между транзисторами существует непосредственная связь (без разделительных конденсаторов), что позволяет им работать с постоянными напряжениями. Выходная нагрузка микросхемы условно показана в виде резистора Rн. На самом деле это чаще всего вход или несколько входов таких же цифровых микросхем.

Первый транзистор многоэмиттерный. Именно он выполняет входную логическую операцию 2И, а следующие за ним транзисторы выполняют усиление и инвертирование сигнала. Микросхемы, выполненные по подобной схеме, называются транзисторно-транзисторной логикой, сокращенно ТТЛ.

В этой аббревиатуре отражен тот факт, что входные логические операции и последующее усиление и инвертирование выполняются транзисторными элементами схемы. Кроме ТТЛ существует еще диодно-транзисторная логика (ДТЛ), входные логические каскады которой выполнены на диодах, расположенных, конечно внутри микросхемы.

Рисунок 7.

На входах логического элемента 2И-НЕ между эмиттерами входного транзистора и общим проводом установлены диоды VD1 и VD2. Их назначение защитить вход от напряжения отрицательной полярности, которое может возникнуть в результате самоиндукции элементов монтажа при работе схемы на высоких частотах, либо просто подано по ошибке от внешних источников.

Входной транзистор VT1 включен по схеме с общей базой, а его нагрузкой служит транзистор VT2, который имеет две нагрузки. В эмиттере это резистор R3, а в коллекторе R2. Таким образом, получается фазоинвертор для выходного каскада на транзисторах VT3 и VT4, что заставляет работать их в противофазе: когда закрыт VT3, открыт VT4 и наоборот.

Предположим, что на оба входа элемента 2И-НЕ подан низкий уровень. Для этого достаточно просто соединить эти входы с общим проводом. В этом случае транзистор VT1 будет открыт, что повлечет за собой закрытие транзисторов VT2 и VT4. Транзистор же VT3 окажется в открытом состоянии и через него и диод VD3 ток течет в нагрузку - на выходе элемента состояние высокого уровня (логическая единица).

В том случае, если на оба входа подать логическую единицу транзистор VT1 закроется, что приведет к открытию транзисторов VT2 и VT4. За счет их открытия транзистор VT3 закроется и ток через нагрузку прекратится. На выходе элемента устанавливается нулевое состояние или напряжение низкого уровня.

Напряжение низкого уровня обусловлено падением напряжения на переходе коллектор - эмиттер открытого транзистора VT4 и согласно техническим условиям не превышает 0,4В.

Напряжение высокого уровня на выходе элемента меньше, чем напряжение питания на величину падения напряжения на открытом транзисторе VT3 и диоде VD3 в том случае, когда транзистор VT4 закрыт. Напряжение высокого уровня на выходе элемента зависит от нагрузки, но не должно быть менее 2,4В.

Если на входы элемента, соединенные вместе, подать очень медленно изменяющееся напряжение, меняющееся от 0…5в, то можно проследить что переход элемента из высокого уровня в низкий происходит скачкообразно. Этот переход выполняется в тот момент, когда напряжение на входах достигает уровня примерно 1,2В. Такое напряжение для 155 - й серии микросхем называется пороговым.

Борис Алалдышкин

Продолжение статьи:

Электронная книга -

Микросхема К155ЛА3 является, по сути, базовым элементом 155-ой серии интегральных микросхем. Внешне по исполнению она выполнена в 14 выводном DIP корпусе, на внешней стороне которого выполнена маркировка и ключ, позволяющий определить начало нумерации выводов (при виде сверху — от точки и против часовой стрелки).

В функциональной структуре микросхемы К155ЛА3 имеется 4 самостоятельных логических элементов . Одно лишь их объединяет, а это линии питания (общий вывод — 7, вывод 14 – положительный полюс питания) Как правило, контакты питания микросхем не изображаются на принципиальных схемах.

Каждый отдельный 2И-НЕ элемент микросхемы К155ЛА3 на схеме обозначают DD1.1, DD1.2, DD1.3, DD1.4. По правую сторону элементов находятся выходы, по левую сторону входы. Аналогом отечественной микросхемы К155ЛА3 является зарубежная микросхема SN7400, а все серия К155 аналогична зарубежной SN74.

Таблица истинности микросхемы К155ЛА3

Опыты с микросхемой К155ЛА3

На макетную плату установите микросхему К155ЛА3 к выводам подсоедините питание (7 вывод минус, 14 вывод плюс 5 вольт). Для выполнения замеров лучше применить стрелочный вольтметр, имеющий сопротивление более 10 кОм на вольт. Спросите, почему нужно использовать стрелочный? Потому, что, по движению стрелки, можно определить наличие низкочастотных импульсов.

После подачи напряжения, измерьте напряжение на всех ножках К155ЛА3. При исправной микросхеме напряжение на выходных ножках (3, 6, 8 и 11) должно быть около 0,3 вольт, а на выводах (1, 2, 4, 5, 9, 10, 12, и 13) в районе 1,4 В.

Для исследования функционирования логического элемента 2И-НЕ микросхемы К155ЛА3 возьмем первый элемент. Как было сказано выше, его входом служат выводы 1 и 2, а выходом является 3. Сигналом логической 1 будет служить плюс источника питания через токоограничивающий резистор 1,5 кОм, а логическим 0 будем брать с минуса питания.

Опыт первый (рис.1): Подадим на ножку 2 логический 0 (соединим ее с минусом питания), а на ножку 1 логическую единицу (плюс питания через резистор 1,5 кОм). Замерим напряжение на выходе 3, оно должно быть около 3,5 В (напряжение лог. 1)

Вывод первый : Если на одном из входов лог.0, а на другом лог.1, то на выходе К155ЛА3 обязательно будет лог.1

Опыт второй (рис.2): Теперь подадим лог.1 на оба входа 1 и 2 и дополнительно к одному из входов (пусть будет 2) подключим перемычку, второй конец которой будет соединен с минусом питания. Подадим питание на схему и замерим напряжение на выходе.

Оно должно быть равно лог.1. Теперь уберем перемычку, и стрелка вольтметра укажет напряжение не более 0,4 вольта, что соответствует уровню лог. 0. Устанавливая и убирая перемычку можно наблюдать как «прыгает» стрелка вольтметра указывая на изменения сигнала на выходе микросхемы К155ЛА3.

Вывод второй: Сигнал лог. 0 на выходе элемента 2И-НЕ будет только в том случае, если на обоих его входах будет уровень лог.1

Следует отметить, что неподключенные входы элемента 2И-НЕ («висят в воздухе»), приводит к появлению низкого логического уровня на входе К155ЛА3.

Опыт третий (рис.3): Если соединить оба входа 1 и 2, то из элемента 2И-НЕ получится логический элемент НЕ (инвертор). Подавая на вход лог.0 на выходе будет лог.1 и наоборот.

Рассказать друзьям