Что такое частота основного резонанса динамика. Информация Резонанс подвижной системы. Частота основного резонанса. Fs. Измерения V as

💖 Нравится? Поделись с друзьями ссылкой

Всем привет! Сегодня я постараюсь рассказать об основных параметрах автомобильных сабвуферов. Для чего же они могут понадобиться? А нужны они для того, чтобы правильно собрать короб для вашего динамика. Если не провести расчеты будущей коробки, сабвуфер будет гудеть, не будет громкого и глубокого баса. Вообще, сабвуфер - это независимая акустическая система, играющая низкие частоты от 20 ГЦ до 80 ГЦ. Можно с уверенностью сказать, что без сабвуфера никогда не получить качественного баса в автомобиле. Колонки конечно пытаются заменить НЧ динамик, но получается мягко говоря, слабо. Сабвуфер же, может помочь разгрузить колонки, взяв на себя низкочастотный диапазон, а фронтальной и тыловой акустике останется лишь играть средние и высокие частоты. Благодаря этому можно избавиться от искажений в звуке, и получить более гармоничное звучание музыки.

Теперь обсудим основные параметры низкочастотного динамика. Их понимание очень пригодится при постройке короба сабвуфера. Минимальный набор данных выглядит так: FS (резонансная частота динамика), VAS (эквивалентный объем) и QTS (полная добротность). Если неизвестно значение хотя бы одного параметра, лучше отказаться от этого динамика, т.к. рассчитать объем короба не получится.

Резонансная частота (Fs)

Резонансная частота - это частота резонанса НЧ головки без оформления, т.е. без полки, короба… Измеряется она следующим образом: динамик подвешивается в воздухе, как можно дальше от окружающих предметов. Так его резонанс будет зависеть только от него самого, т.е. от массы его подвижной системы и жесткости подвеса. Есть мнение, что низкая резонансная частота позволяет сделать отличный сабвуфер. Это не совсем верно, для определенных конструкций слишком низкая частота резонанса будет только помехой. Для справки: низкая частота резонанса, это 20-25 ГЦ. Редко встретишь динамик, у которого резонансная частота ниже 20 ГЦ. Ну а выше 40 ГЦ, будет слишком высоко для сабвуфера.

Полная добротность (Qts)

В данном случае означает не качество изделия, а соотношение вязких и упругих сил, существующих в подвижной системе НЧ головки около частоты резонанса. Подвижная система динамика очень похожа на подвеску автомобиля, в которой есть амортизатор и пружина. Пружина создает упругие силы, то есть собирает и отдает энергию в процессе движения. В свою очередь амортизатор, является источником вязкого сопротивления, он не накапливает ничего, а лишь поглощает и рассеивает в виде тепла. Аналогичный процесс происходит при колебании диффузора и всего, что к нему крепится. Чем выше значение добротности, тем сильнее преобладают упругие силы. Это примерно как машина без амортизаторов. Наедешь на небольшую кочку, и колеса запрыгает на одной пружине. Если говорить о динамике, это означает выброс с частотной характеристики на частоте резонанса, тем больший, чем больше полная добротность системы. Наивысшая добротность измеряется тысячами, и только у колокола. Он звучит исключительно на резонансной частоте. Распространенный способ проверки подвески автомобиля покачиванием из стороны в сторону, является кустарным способом измерения добротности подвески. Амортизатор губит энергию, которая появилась при сжатии пружины, т.е. она не вся вернется обратно. Количество загубленной энергии и есть добротность системы. Вроде бы с пружиной все ясно - её роль выполняет подвеска диффузора. Но где же амортизатор? А их тут целых два, причем работают они параллельно. Полная добротность состоит из двух: электрической и механической.

Механическая добротность обычно определяется выбором материала подвеса, в основном - центрирующей шайбы. Как правило, потери тут минимальны, и полная добротность состоит из механической лишь на 10-15%.

Большую часть составляет электрическая добротность. Самый жесткий амортизатор, имеющийся в двигательной системе динамика, это тандем магнита и звуковой катушки. Являясь по сути электромотором, он работает как генератор вблизи частоты резонанса, когда скорость и амплитуда движения звуковой катушки максимальны. Передвигаясь в магнитном поле, катушка вырабатывает ток, а нагрузкой генератора является выходное сопротивление усилителя, т.е. ноль. В итоге получается такой же электрический тормоз, как на электричках. Там примерно также тяговые двигатели заставляют работать в режиме генераторов, а батареи тормозных сопротивлений на крыше являются нагрузкой. Величина вырабатываемого тока будет зависеть от магнитного поля. Чем сильнее магнитное поле, тем больше будет величина тока. В итоге получается, что чем мощнее магнит динамика, тем ниже его добротность. Но, т.к. при вычислении этой величины нужно принять во внимание и длину провода обмотки, и ширину зазора в магнитной системе, окончательный вывод делать на основании размера магнита будет не правильно.

Для справки: низкая добротность динамика будет меньше 0,3, а высокая больше 0,5.

Эквивалентный объем (Vas)

Большая часть современных динамиков основана на принципе «акустического подвеса». Смысл в том, что нужно подобрать такой объем воздуха, при котором его упругость будет соответствовать упругости подвеса громкоговорителя. То есть, добавляется еще одна пружина в подвеску динамика. Если новая пружина будет равна по упругости старой, такой объем и будет эквивалентным. Его величина определяется диаметром динамика и жесткостью подвеса.

Чем мягче будет подвес, тем больше будет величина воздушной подушки, присутствие которой начнет колебать головку. Тоже самое происходит при изменении диаметра диффузора. Большой диффузор, при одинаковом смещении, будет сильнее сжимать воздух в ящике, и тем самым будет испытывать большую отдачу. Именно на это стоит обращать внимание при выборе динамика, ведь объем короба зависит от этого. Чем больше диффузор, тем выше будет отдача сабвуфера, но и размеры короба будут внушительными. Эквивалентный объем сильно связан с резонансной частотой, не зная которых можно допустить ошибку. Резонансная частота определяется массой подвижной системы и жесткостью подвеса, а эквивалентный объем, той же жесткостью подвеса и диаметром диффузора. Может получиться так: есть два НЧ динамика одного размера и с одинаковой частотой резонанса, но у одного из них - частота резонанса зависит от тяжелого диффузора и жесткой подвески, а у второго - от легкого диффузора и мягкого подвеса. Эквивалентный объем, в этом случае, может очень существенно отличаться, и при установке в один и тот же короб, результаты будут сильно разница.

Надеюсь, я немного помог разобраться с основными параметрами НЧ динамиков.

Вот решил сам написать статью, весьма важную для акустиков. В этой статье хочу описать способы измерения самых важных параметров динамических головок - параметры Тиля-Смолла.

Помните! Приведенная ниже методика действенна только для измерения параметров Тиля-Смолла динамиков с резонансными частотами ниже 100Гц (т.е. низкочастотных динамиков), на более высоких частотах погрешность возрастает.

Самыми основными параметрами Тиля-Смолла , по которым можно рассчитать и изготовить акустическое оформление (проще говоря - ящик) являются:

  • Резонансная частота динамика F s (Герц)
  • Эквивалентный объем V as (литров или кубических футов)
  • Полная добротность Q ts
  • Сопротивление постоянному току R e (Ом)

Для более серьезного подхода понадобится еще знать:

  • Механическую добротность Q ms
  • Электрическую добротность Q es
  • Площадь диффузора S d (м 2) или его диаметр Dia (см)
  • Чувствительность SPL (dB)
  • Индуктивность L e (Генри)
  • Импеданс Z (Ом)
  • Пиковую мощность P e (Ватт)
  • Массу подвижной системы M ms (г)
  • Относительную жесткость (механическая гибкость) C ms (метров/ньютон)
  • Механическое сопротивление R ms (кг/сек)
  • Двигательную мощность (произведение индукции в магнитном зазоре на длину провода звуковой катушки) BL (Тесла*м)

Большинство этих параметров может быть измерено или рассчитано в домашних условиях с помощью не особо сложных измерительных приборов и компьютера или калькулятора, умеющего извлекать корни и возводить в степень. Для еще более серьезного подхода к проектированию акустического оформления и учета характеристик динамиков рекомендую читать более серьезную литературу. Автор этого "труда" не претендует на особые знания в области теории, а все тут изложенное является компиляцией из различных источников - как иностранных, так и российских.

Измерение параметров Тиля-Смолла R e , F s , F c , Q es , Q ms , Q ts , Q tc , V as , C ms , S d , M ms .

Для проведения измерений этих параметров вам понадобится следующее оборудование:

  1. Вольтметр
  2. Генератор сигналов звуковой частоты. Подойдут программы-генераторы, которые генерируют необходимые частоты. Типа Marchand Function Generator или NCH tone generator . Так как дома не всегда можно найти частотомер, можно вполне доверится этим программам и Вашей звуковой карте, установленной на компьютере.
  3. Мощный (не менее 5 ватт) резистор сопротивлением 1000 ом
  4. Точный (+- 1%) резистор сопротивлением 10 ом
  5. Провода, зажимы и прочая дребедень для соединения всего этого в единую схему.

Схема для измерений

Калибровка:

Для начала необходимо откалибровать вольтметр. Для этого вместо динамика подсоединяется сопротивление 10 Ом и подбором напряжения, выдаваемого генератором, надо добиться напряжения 0.01 вольта. Если резистор другого номинала, то напряжение должно соответствовать 1/1000 номинала сопротивления в Омах. Например, для калибровочного сопротивления 4 Ома напряжение должно быть 0.004 вольта. Запомните! После калибровки регулировать выходное напряжение генератора НЕЛЬЗЯ до окончания всех измерений.

Нахождение R e

Теперь, подсоединив вместо калибровочного сопротивления динамик и выставив на генераторе частоту, близкую к 0 герц, мы можем определить его сопротивление постоянному току Re. Им будет являться показание вольтметра, умноженное на 1000. Впрочем, Re можно замерить и непосредственно омметром.

Нахождение Fs и Rmax

Динамик при этом и всех последующих измерениях должен находиться в свободном пространстве. Резонансная частота динамика находится по пику его импеданса (Z-характеристике). Для ее нахождения плавно изменяйте частоту генератора и смотрите на показания вольтметра. Та частота, на которой напряжение на вольтметре будет максимальным (дальнейшее изменение частоты будет приводить к падению напряжения) и будет являться частотой основного резонанса для этого динамика. Для динамиков диаметром больше 16см эта частота должна лежать ниже 100Гц. Не забудьте записать не только частоту, но и показания вольтметра. Умноженные на 1000, они дадут сопротивление динамика на резонансной частоте Rmax, необходимое для расчета других параметров.

Нахождение Q ms , Q es и Q ts

Эти параметры находятся по следующим формулам:

Как видно, это последовательное нахождение дополнительных параметров R o , R x и измерение неизвестных нам ранее частот F 1 и F 2 . Это частоты, при которых сопротивление динамика равно Rx. Поскольку Rx всегда меньше Rmax, то и частот будет две - одна несколько меньше Fs, а другая несколько больше. Вы можете проверить правильность своих измерений следующей формулой:

Если расчетный результат отличается от найденного ранее больше, чем на 1 герц, то нужно повторить все сначала и более аккуратно. Итак, мы нашли и рассчитали несколько основных параметров и можем на их основании делать некоторые выводы:

  1. Если резонансная частота динамика выше 50Гц, то он имеет право претендовать на работу в лучшем случае как мидбас. О сабвуфере на таком динамике можно сразу забыть.
  2. Если резонансная частота динамика выше 100Гц, то это вообще не низкочастотник. Можете использовать его для воспроизведения средних частот в трехполосных системах.
  3. Если соотношение F s /Q ts у динамика составляет менее 50-ти, то этот динамик предназначен для работы исключительно в закрытых ящиках. Если больше 100 - исключительно для работы с фазоинвертором или в бандпассах. Если же значение находится в промежутке между 50 и 100, то тут нужно внимательно смотреть и на другие параметры - к какому типу акустического оформления динамик тяготеет. Лучше всего для этого использовать специальные компьютерные программы, способные смоделировать в графическом виде акустическую отдачу такого динамика в разном акустическом оформлении. Правда при этом не обойтись без других, не менее важных параметров - V as , S d , C ms и L.

Нахождение S d

Это так называемая эффективная излучающая поверхность диффузора. Для самых низких частот (в зоне поршневого действия) она совпадает с конструктивной и равна:

Радиусом R в данном случае будет являться половина расстояния от середины ширины резинового подвеса одной стороны до середины резинового подвеса противоположной. Это связано с тем, что половина ширины резинового подвеса также является излучающей поверхностью. Обратите внимание, что единица измерения этой площади - квадратные метры. Соответственно и радиус нужно в нее подставлять в метрах.

Нахождение индуктивности катушки динамика L

Для этого нужны результаты одного из отсчетов из самого первого теста. Понадобится импеданс (полное сопротивление) звуковой катушки на частоте около 1000Гц. Поскольку реактивная составляющая (X L) отстоит от активной R e на угол 900, то можно воспользоваться теоремой Пифагора:

Поскольку Z (импеданс катушки на определенной частоте) и R e (сопротивление катушки по постоянному току) известны, то формула преобразуется к:

Найдя реактивное сопротивление X L на частоте F можно рассчитаь и саму индуктивность по формуле:

Измерения V as

Есть несколько способов измерения эквивалентного объема, но в домашних условиях проще использовать два: метод "добавочной массы" и метод "добавочного объема". Первый из них требует из материалов несколько грузиков известного веса. Можно использовать набор грузиков от аптечных весов или воспользоваться старыми медными монетками 1,2,3 и 5 копеек, поскольку вес такой монетки в граммах соответствует номиналу. Второй метод требует наличия герметичного ящика заранее известного объема с соответствующим отверстием под динамик.{mospagebreak}

Нахождение V as методом добавочной массы

Для начала нужно равномерно нагрузить диффузор грузиками и вновь измерить его резонансную частоту, записав ее как F" s . Она должна быть ниже, чем F s . Лучше если новая резонансная частота будет меньше на 30%-50%. Масса грузиков берется приблизительно 10 граммов на каждый дюйм диаметра диффузора. Т.е. для 12" головки нужен груз массой около 120 граммов.

где М - масса добавленных грузиков в килограммах.

Исходя из полученных результатов V as (м 3) рассчитывается по формуле:

Нахождение V as методом добавочного объема

Нужно герметично закрепить динамик в измерительном ящике. Лучше всего это сделать магнитом наружу, поскольку динамику все равно, с какой стороны у него объем, а вам будет проще подключать провода. Да и лишних отверстий при этом меньше. Объем ящика обозначен как V b .

Затем нужно произвести измерения Fс (резонансной частоты динамика в закрытом ящике) и, соответственно, вычислить Q mc , Q ec и Q tc . Методика измерения полностью аналогична описанной выше. Затем находится эквивалентный объем по формуле:

Полученных в результате всех этих измерений данных достаточно для дальнейшего расчета акустического оформления низкочастотного звена достаточно высокого класса. А вот как оно рассчитывается - это уже совсем другая история.

Определение механической гибкости C ms

Где S d - эффективная площадь диффузора с номинальным диаметром D. Как вычислять написано ранее.

Определение массы подвижной системы Mms

Она легко рассчитывается по формуле:

Двигательную мощность (произведение индукции в магнитном зазоре на длину провода звуковой катушки) BL

Самое главное не забывайте, что для более точных значений измерения параметров Тиля-Смолла необходимо проводить эксперимент несколько раз, а затем путем усреднения получать более точные значения.

Нижняя граница воспроизводимого громкоговорителем диапазона частот определяется основной резонансной частотой головки. К сожалению, в продаже очень редко бывают головки, имеющие основную резонансную частоту ниже 60-80 Гц. Поэтому для расширения диапазона рабочих частот акустических систем весьма актуальной представляется возможность снижения основной резонансной частоты используемых в них головок. Как известно, подвижная система головки (диффузор со звуковой катушкой) в области основного резонанса представляет собой простую колебательную систему, состоящую из массы и гибкости подвеса. Резонансная частота такой системы определяется формулой:

где т - масса диффузора, звуковой катушки и присоединенной массы воздуха, г;
С - гибкость подвеса, см/дин.

Таким образом, чтобы снизить основную резонансную частоту головки необходимо увеличить либо массу диффузора и звуковой катушки, либо гибкость их подвеса, либо то и другое вместе. Наиболее просто увеличить массу диффузора, укрепив на нем дополнительный груз. Однако увеличивать массу подвижной системы головки невыгодно, так как это снизит не только резонансную частоту, но и создаваемое головкой звуковое давление. Дело в том, что сила F, создаваемая током I в звуковой катушке динамической головки, равна

F=В*l*I,
где B - магнитная индукция в зазоре;
l - длина проводника звуковой катушки.

С другой стороны, согласно законам механики, эта сила равна

F=m*a,
где m - масса подвижной системы; a - колебательное ускорение.

Поскольку сила, приложенная к звуковой катушке, зависит для данной головки только от величины тока, то увеличив массу, мы во столько же раз уменьшим колебательное ускорение катушки и диффузора; а поскольку звуковое давление, создаваемое головкой в этой области частот, пропорционально ускорению диффузора, уменьшение ускорения равносильно снижению звукового давления. Если бы мы попытались вдвое снизить основную резонансную частоту головки, для этого потребовалось бы увеличить массу подвижной системы в четыре раза, и во столько же раз снизилось бы создаваемое головкой звуковое давление при неизменном токе в катушке. Кроме того, увеличение массы повысило бы добротность подвижной системы и увеличило резонансный пик, а с ним и неравномерность частотной характеристики, что, в свою очередь, ухудшило бы переходные характеристики громкоговорителя.

Следовательно, для снижения резонансной частоты головки целесообразнее увеличить гибкость подвеса диффузора и центрирующего диска, то есть уменьшить жесткость крепления подвижной системы. Делается это следующим образом. Прежде всего отклеивают или отрезают острым скальпелем или лезвием (по кольцу диффузородержателя) воротник диффузора. Затем отпаивают гибкие выводы звуковой катушки, отвинчивают кольцо центрирующего диска и гетинаксовый <паук" (если таковые имеются) или отклеивают центрирующий диск от диффузородержателя.

Гибкость центрирующего диска с гофрами увеличивают, прорезав в нем равномерно по окружности три-четыре конусообразных отверстия (см. рис. 1). Общая площадь этих отверстий должна составлять 0,4- 0,5 площади гофров центрирующего диска. Для зашиты магнитного зазора от пыли на вырезы или весь диск обычным резиновым клеем или клеем БФ-6 наклеивают марлю. Если звуковая катушка центрируется гетинаксовым (текстолитовым) "пауком", то гибкость увеличивают, уменьшая ширину его дужек (запиливая их напильником или осторожно обкусывая кусачками). После этого обрезают у диффузора часть краевого гофра, чтобы между краем диффузора и кольцом диффузородержателя был промежуток около 200 мм. Если при этом на краю диффузора остался гофр, то его расправляют на длине около 10 мм и приклеивают к нему подвес в виде дужек из повинола или мягкого текстовинила. Для увеличения гибкости по возможности следует удалить их текстильную или трикотажную подложку.

Очень гибкие и эластичные дужки можно изготовить с помощью кремнийорганического клея - герметика "эластосил" из тонких капроновых чулок. Голенище чулка разрезают вдоль и на полученном полотне шириной 24-28 см делают разметку (см. рис. 2). При разметке дужки должны быть расположены поперек чулка (см. рис. 2), поскольку эластичность чулка больше в продольном направлении. Затем, положив на какую-нибудь дощечку или толстый картон, кусок гладкой полиэтиленовой пленки, накладывают на нее чулочное полотно и закрепляют по краям кнопками или гвоздиками. После этого шпателем или торцом металлической линейки наносят на трикотаж эластосил", так чтобы нити трикотажа не были видны. Через сутки (время полимеризации "эластосила") трикотаж переворачивают и наносят оластосил" на другую сторону.

Для вырезания дужек следует изготовить картонный шаблон. Диффузор желательно подвесить не более чем на трех или четырех дужках так, чтобы каждая дужка занимала соответственно треть или четверть длины окружности диффузора. На дужках и на краю диффузора карандашом отмечают поверхности, которыми они должны быть склеены, ширина этих поверхностей должна составлять 7-10 мм. Готовые дужки намазывают поочередно клеем и приклеивают их к отмеченному краю диффузора "эластосилом" либо кремнийорганическим клеем КТ-30 или МСН-7. Дужки из павинола или текстовинила приклеивают поверхностью, где находился текстиль, клеем БФ-2, 88 или АВ-4. Рекомендуется предварительно проверить пригодность (соответствие) клея материалу, приклеив кусочек материала к плотной бумаге.

Стыки между дужками должны быть также склеены так, чтобы не было щелей. Лучше всего это сделать "эластосилом", у павиноловых или текстовиниловых дужек рекомендуется скрепить края нитками и залить-в несколько приемов обычным резиновым клеем.

Закончив подвес диффузора, его устанавливают в диффузородержатель так, чтобы звуковая катушка вошла в зазор. Затем укрепляют кольцо центрирующего диска и производят предварительную центровку звуковой катушки (до приклейки подвеса). Далее поочередно приклеивают к кольцу диффузородержателя дужки подвеса диффузора. Для отгибания дужек,

при намазывании клеем кольца диффузородержателя, удобно использовать зажимы "крокодил" с вставленными в них однополюсными вилками (для тяжести). После подклейки подвеса производят окончательную центровку звуковой катушки и закрепляют кольца центрирующего диска или гетинаксового "паука". Если центрирующий диск не имеет металлического кольца и отклеен, то вначале приклеивают, подвес диффузора, а затем центрирующий диск, одновременно с этим центрируя звуковую катушку в зазоре. В последнюю очередь припаивают выводы звуковой катушки и приклеивают к диффузородержателю опорные дужки из картона, губчатой резины или войлока.

Если диффузор имеет трещину (разрыв), то ее лучше всего заклеить клеем "эластосил" или в несколько приемов залить, резиновым клеем.

Описанным способом удается снизить частоту основного резонанса головки в 1,5-2 раза. Для примера на рис. 3 приведены частотные характеристики полного сопротивления головки 4А-18 до (пунктир) и после переделки.

Эта головка изготовлена ленинградским заводом киноаппаратуры "Кинап" в 1954 году; переделка ее состояла в прорезании трех окон в центрирующем диске и замене краевого гофра павиноловыми дужками, причем текстильная подложка не удалялась. Резонансная частота снизилась со 105 Гц до 70 Гц, то есть в 1,5 раза. Любопытно отметить, что такое же снижение частоты резонанса дает дополнительный груз массой 25 г.

Нижняя граница воспроизводимого громкоговорителем диапазона частот определяется основной резонансной частотой головки. К сожалению, в продаже очень редко бывают головки, имеющие основную резонансную частоту ниже 60-80 Гц. Поэтому для расширения диапазона рабочих частот акустических систем весьма актуальной представляется возможность снижения основной резонансной частоты используемых в них головок. Как известно, подвижная система головки (диффузор со звуковой катушкой) в области основного резонанса представляет собой простую колебательную систему, состоящую из массы и гибкости подвеса. Резонансная частота такой системы определяется формулой:

Где m - масса диффузора, звуковой катушки и присоединенной массы воздуха, г, С - гибкость подвеса, см/дин.

Таким образом, чтобы снизить основную резонансную частоту головки необходимо увеличить либо массу диффузора и звуковой катушки, либо гибкость их подвеса, либо то и другое вместе. Наиболее просто увеличить массу диффузора, укрепив на нем дополнительный груз. Однако увеличивать массу подвижной системы головки невыгодно, так как это снизит не только резонансную частоту, но и создаваемое головкой звуковое давление. Дело в том, что сила F, создаваемая током I в звуковой катушке динамической головки, равна

Где B - магнитная индукция в зазоре, l - длина проводника звуковой катушки.

С другой стороны, согласно законам механики, эта сила равна F=m*a,гдеm - масса подвижной системы, a - колебательное ускорение.

Поскольку сила, приложенная к звуковой катушке, зависит для данной головки только от величины тока, то увеличив массу, мы во столько же раз уменьшим колебательное ускорение катушки и диффузора; а поскольку звуковое давление, создаваемое головкой в этой области частот, пропорционально ускорению диффузора, уменьшение ускорения равносильно снижению звукового давления. Если бы мы попытались вдвое снизить основную резонансную частоту головки, для этого потребовалось бы увеличить массу подвижной системы в четыре раза, и во столько же раз снизилось бы создаваемое головкой звуковое давление при неизменном токе в катушке. Кроме того, увеличение массы повысило бы добротность подвижной системы и увеличило резонансный пик, а с ним и неравномерность частотной характеристики, что, в свою очередь, ухудшило бы переходные характеристики громкоговорителя.

Следовательно, для снижения резонансной частоты головки целесообразнее увеличить гибкость подвеса диффузора и центрирующего диска, то есть уменьшить жесткость крепления подвижной системы. Делается это следующим образом. Прежде всего отклеивают или отрезают острым скальпелем или лезвием (по кольцу диффузородержателя) воротник диффузора. Затем отпаивают гибкие выводы звуковой катушки, отвинчивают кольцо центрирующего диска и гетинаксовый «паук» (если таковые имеются) или отклеивают центрирующий диск от диффузородержателя.

Гибкость центрирующего диска с гофрами увеличивают, прорезав в нем равномерно по окружности три-четыре конусообразных отверстия (см. рис. 1). Общая площадь этих отверстий должна составлять 0,4- 0,5 площади гофров центрирующего диска. Для зашиты магнитного зазора от пыли на вырезы или весь диск обычным резиновым клеем или клеем БФ-6 наклеивают марлю. Если звуковая катушка центрируется гетинаксовым (текстолитовым) "пауком", то гибкость увеличивают, уменьшая ширину его дужек (запиливая их напильником или осторожно обкусывая кусачками). После этого обрезают у диффузора часть краевого гофра, чтобы между краем диффузора и кольцом диффузородержателя был промежуток около 200 мм. Если при этом на краю диффузора остался гофр, то его расправляют на длине около 10 мм и приклеивают к нему подвес в виде дужек из павинола или мягкого текстовинила. Для увеличения гибкости по возможности следует удалить их текстильную или трикотажную подложку.

Очень гибкие и эластичные дужки можно изготовить с помощью кремнийорганического клея - герметика "эластосил" из тонких капроновых чулок. Голенище чулка разрезают вдоль и на полученном полотне шириной 24-28 см делают разметку (см. рис. 2). При разметке дужки должны быть расположены поперек чулка (см. рис. 2), поскольку эластичность чулка больше в продольном направлении. Затем, положив на какую-нибудь дощечку или толстый картон, кусок гладкой полиэтиленовой пленки, накладывают на нее чулочное полотно и закрепляют по краям кнопками или гвоздиками. После этого шпателем или торцом металлической линейки наносят на трикотаж «эластосил», так чтобы нити трикотажа не были видны. Через сутки (время полимеризации «эластосила») трикотаж переворачивают и наносят «эластосил» на другую сторону.

Для вырезания дужек следует изготовить картонный шаблон. Диффузор желательно подвесить не более чем на трех или четырех дужках так, чтобы каждая дужка занимала соответственно треть или четверть длины окружности диффузора. На дужках и на краю диффузора карандашом отмечают поверхности, которыми они должны быть склеены, ширина этих поверхностей должна составлять 7-10 мм. Готовые дужки намазывают поочередно клеем и приклеивают их к отмеченному краю диффузора «эластосилом» либо кремнийорганическим клеем КТ-30 или МСН-7. Дужки из павинола или текстовинила приклеивают поверхностью, где находился текстиль, клеем БФ-2, 88 или АВ-4. Рекомендуется предварительно проверить пригодность (соответствие) клея материалу, приклеив кусочек материала к плотной бумаге.

Стыки между дужками должны быть также склеены так, чтобы не было щелей. Лучше всего это сделать "эластосилом", у павиноловых или текстовиниловых дужек рекомендуется скрепить края нитками и залить-в несколько приемов обычным резиновым клеем.

Закончив подвес диффузора, его устанавливают в диффузородержатель так, чтобы звуковая катушка вошла в зазор. Затем укрепляют кольцо центрирующего диска и производят предварительную центровку звуковой катушки (до приклейки подвеса). Далее поочередно приклеивают к кольцу диффузородержателя дужки подвеса диффузора. Для отгибания дужек, при намазывании клеем кольца диффузородержателя, удобно использовать зажимы "крокодил" с вставленными в них однополюсными вилками (для тяжести). После подклейки подвеса производят окончательную центровку звуковой катушки и закрепляют кольца центрирующего диска или гетинаксового "паука". Если центрирующий диск не имеет металлического кольца и отклеен, то вначале приклеивают, подвес диффузора, а затем центрирующий диск, одновременно с этим центрируя звуковую катушку в зазоре. В последнюю очередь припаивают выводы звуковой катушки и приклеивают к диффузородержателю опорные дужки из картона, губчатой резины или войлока.

Если диффузор имеет трещину (разрыв), то ее лучше всего заклеить клеем "эластосил" или в несколько приемов залить, резиновым клеем.

Описанным способом удается снизить частоту основного резонанса головки в 1,5-2 раза. Для примера на рис. 3 приведены частотные характеристики полного сопротивления головки 4А-18 до (пунктир) и после переделки.

Эта головка изготовлена ленинградским заводом киноаппаратуры "Кинап" в 1954 году; переделка ее состояла в прорезании трех окон в центрирующем диске и замене краевого гофра павиноловыми дужками, причем текстильная подложка не удалялась. Резонансная частота снизилась со 105 Гц до 70 Гц, то есть в 1,5 раза. Любопытно отметить, что такое же снижение частоты резонанса дает дополнительный груз массой 25 г.

- Как! У тебя есть бабушка, которая угадывает три карты сряду, а ты до сих пор не перенял у ней ее кабалистики?
А.С. Пушкин, «Пиковая дама»

Сегодня речь пойдёт о том, что важно знать об акустике на самом деле. А именно - о знаменитых параметрах Тиля - Смолла, знание которых - залог выигрыша в азартной игре в автозвук. Без шельмовства и кабалистики.

Один выдающийся математик, по преданию, читая студентам лекции, говорил: «А сейчас мы приступим к доказательству теоремы, имя которой я имею честь носить». Кому выпала честь носить имена параметров Тиля и Смолла? Вспомним и это. Первым в связке идёт Альберт Невил Тиль (в оригинале A. Neville Thiele, «А» почти никогда не расшифровывается). И по возрасту, и по библиографии. Тилю сейчас 84 года, а когда ему было 40, он опубликовал историческую работу, в которой впервые было предложено проводить расчёты характеристик громкоговорителей на основе единого набора параметров, причём удобным и воспроизводимым образом.

Там, в работе 1961 года, было, в частности, сказано: «Характеристики громкоговорителя в области низких частот могут быть адекватно описаны с помощью трёх параметров: резонансной частоты, объёма воздуха, эквивалентного акустической гибкости громкоговорителя, и отношения электрического сопротивления к сопротивлению движению на резонансной частоте. По этим же параметрам определяется и электроакустическая эффективность. Я обращаюсь к производителям громкоговорителей с просьбой публиковать эти параметры как часть основных сведений об их изделиях».

Просьба Невилла Тиля была услышана индустрией только через десятилетие, в это время Тиль уже работал вместе с Рихардом Смоллом, уроженцем Калифорнии. По-калифорнийски пишется Richard Small, но почему-то уважаемый доктор предпочитает немецкий вариант произношения собственного имени. Смоллу в этом году исполняется 70, между прочим - юбилей поважнее многих. В начале семидесятых Тиль и Смолл окончательно довели до ума предложенный ими подход к расчёту громкоговорителей.

Сейчас Невилл Тиль - почётный профессор одного из университетов у себя на родине, в Австралии, а последняя профессиональная позиция Д-ра Смолла, за которой нам удалось уследить - главный инженер департамента автомобильной аудиотехники Harman-Becker. Ну и, само собой, оба - в составе руководства международного общества инженеров-акустиков (Audio Engineering Society). В общем, оба живы здоровы.

Слева Тиль, справа - Смолл, в порядке вклада в электроакустику. Между прочим, снимок редкий, мэтры не любили фотографироваться

Вешать или не вешать?

Образное определение условий измерения Fs как резонансной частоты динамика, висящего в воздухе, породило заблуждение, что так и надо эту частоту измерять, и энтузиасты норовили действительно подвешивать динамики на проволоках и верёвках. Измерениям параметров акустики будет посвящён отдельный выпуск «ВВ», а то и не один, здесь же отмечу: в грамотных лабораториях динамики при измерениях зажимают в тиски, а не подвешивают к люстре.

Итоги вычислительного эксперимента, которые помогут желающим понять, как величины электрической и механической добротности выражаются в импедансных кривых. Мы взяли полный набор электромеханических параметров реально существующего динамика, а потом стали изменять некоторые из них. Сперва - механическую добротность, как будто заменяли материал гофра и центрирующей шайбы. Потом - электрическую, для этого уже понадобилось изменять характеристики привода и подвижной системы. Вот что получилось:

Реальная импедансная кривая низкочастотного динамика. По ней вычисляются два из трёх главных параметров

Кривые импеданса для разных значений полной добротности, при этом электрическая Qes одна и та же, равная 0,5, а механическая изменяется от 1 до 8. Полная добротность Qts изменяется вроде бы не сильно, а высота горба на графике импеданса - сильно, и очень, при этом чем меньше Qms, тем он становится острее

Зависимость звукового давления от частоты при тех же значениях Qts. При измерении звукового давления важна только полная добротность Qts, поэтому совершенно непохожим кривым импеданса соответствуют не такие уж разные кривые звукового давления от частоты

Те же значения Qts, но теперь всюду Qms = 4, а Qes меняется так, чтобы выйти на те же значения Qts. Значения Qts те же, а кривые совсем другие и различаются между собой намного меньше. Нижние, красные кривые получены для тех значений, которые нельзя было получить в первом опыте при фиксированной Qes = 0,5

Кривые звукового давления для разных Qts, полученных изменением Qes. Четыре верхние кривые по форме - точно такие же, как когда мы меняли Qms, их форма определяется значениями Qts, а они остались прежними. Нижние, красные кривые, полученные для Qts больше 0,5, разумеется, другие, и на них начинает расти горб, обусловленный повышенной добротностью.

А вот теперь обратите внимание: дело не только в том, что при высоких Qts на характеристике появляется горб, при этом снижается чувствительность динамика на частотах выше резонансной. Объяснение простое: при прочих равных Qes может возрастать только с ростом массы подвижной системы или с уменьшением мощности магнита. И то и другое ведёт к падению чувствительности на средних частотах. Так что горб на резонансной частоте - это, скорее, следствие провала на частотах выше резонансной. В акустике ничего бесплатного не бывает...

Вклад младшего партнёра

Между прочим: основоположник метода А.Н. Тиль намеревался учитывать в расчётах только электрическую добротность, полагая (справедливо для своего времени), что доля механических потерь пренебрежимо мала по сравнению с потерями, вызванными работой «электрического тормоза» динамика. Вклад младшего партнёра, не единственный, впрочем, заключался в учёте Qms, теперь это стало важным: в современных головках используются материалы с повышенными потерями, которых не было в начале 60-х, и нам попадались динамики, где величина Qms составляла всего лишь 2 - 3, при электрической под единицу. При таких делах не учитывать механические потери было бы ошибкой. И особенно важным это стало с внедрением феррожидкостного охлаждения в ВЧ-головках, там из-за демпфирующего действия жидкости доля Qms в полной добротности становится решающей, а пик импеданса на частоте резонанса становится почти не виден, как на первом графике нашего вычислительного эксперимента.

Три карты, открытые Тилем и Смоллом

1. Fs - частота основного резонанса динамика без всякого корпуса. Характеризует только сам динамик, а не готовую акустическую систему на его базе. При установке в любой объём может только возрастать.

2. Qts - полная добротность динамика, безразмерная величина, характеризующая относительные потери в динамике. Чем она ниже, тем больше подавлен резонанс излучения и тем выше пик сопротивления на импедансной кривой. При установке в закрытый ящик возрастает.

3. Vas - эквивалентный объём динамика. Равен объёму воздуха с такой же жёсткостью, что и у подвеса. Чем жёстче подвес, тем меньше Vas. При одной и той же жёсткости Vas растёт с ростом площади диффузора.

Две половинки, составляющие карту №2

1. Qes - электрическая составляющая полной добротности, характеризует мощность электрического тормоза, препятствующего раскачке диффузора вблизи резонансной частоты. Обычно чем мощнее магнитная система, тем сильнее «тормоз» и тем меньше численно величина Qes.

2. Qms - механическая составляющая полной добротности, характеризует потери в упругих элементах подвеса. Потерь здесь намного меньше, чем в электрической составляющей, и численно Qms гораздо больше Qes.

Почём звенит колокол

Что общего у колокола и громкоговорителя? Ну, то, что оба звучат, - это очевидно. Важнее, что и то и другое - колебательные системы. А в чём различие? Колокол, как по нему ни долби, будет звучать на единственной частоте, предписанной каноном. А внешне не так уж непохожий на него динамик - в широком диапазоне частот, и может, при желании, одновременно изобразить и звон колокола, и пыхтение звонаря. Так вот: два из трёх параметров Тиля - Смолла как раз и описывают количественно это различие.

Только надо твёрдо запомнить, а лучше - перечитать цитату из основоположника в историко-биографической справке. Там сказано: «на низких частотах». К тому, как поведёт себя динамик на частотах более высоких, Тиль, Смолл и их параметры никакого отношения не имеют и никакой ответственности за это не несут. Какие частоты для динамика низкие, а какие - нет? А об этом и говорит первый из тройки параметров.

Карта первая, измеряемая в герцах

Итак: параметр Тиля - Смолла №1 - собственная резонансная частота динамика. Обозначается всегда Fs, независимо от языка публикации. Физический смысл предельно прост: раз динамик - колебательная система, значит, должна быть частота, на которой диффузор будет колебаться, будучи предоставлен сам себе. Как колокол после удара или струна после щипка. При этом имеется в виду, что динамик абсолютно «голый», не установлен ни в какой корпус, как бы висит в пространстве. Это важно, поскольку нас интересуют параметры собственно динамика, а не того, что его окружает.

Диапазон частот вокруг резонансной, две октавы вверх, две октавы вниз - это и есть область, где действуют параметры Тиля - Смолла. Для сабвуферных головок, ещё не установленных в корпус, Fs может составлять от 20 до 50 Гц, у мидбасовых динамиков от 50 (басовитые «шестёрки») до 100 - 120 («четвёрки»). У диффузорных среднечастотников - 100 - 200 Гц, у купольных - 400 - 800, у пищалок - 1000 - 2000 Гц (бывают исключения, очень редкие).

Как определяют собственную резонансную частоту динамика? Нет, как чаще всего определяют - ясно, читают в сопроводительной документации или в отчёте о тесте. Ну а как её изначально узнали? С колоколом было бы проще: дал по нему чем-нибудь и измерил частоту производимого гудения. Динамик же в явной форме ни на какой частоте гудеть не будет. То есть он хочет, но ему не даёт присущее его конструкции затухание колебаний диффузора. В этом смысле динамик очень сходен с автомобильной подвеской, и этой аналогией я пользовался не раз и ещё буду. Что произойдёт, если качнуть на подвеске автомобиль с пустыми амортизаторами? Он хоть несколько раз, но качнётся на собственной резонансной частоте (где есть пружина, там будет и частота). Амортизаторы, сдохшие только отчасти, остановят колебания после одного-двух периодов, а исправные - после первого же качка. В динамике амортизатор главнее пружины, причём здесь их даже два.

Первый, более слабый, работает благодаря тому, что происходит потеря энергии в подвесе. Не случайно гофр делается из специальных сортов каучука, мячик из такого материала от пола почти не будет отскакивать, специальная пропитка с большим внутренним трением выбирается и для центрирующей шайбы. Это как бы механический тормоз колебаний диффузора. Второй, гораздо более мощный - электрический.

Вот как он работает. Звуковая катушка динамика - его мотор. В ней течёт переменный ток от усилителя, и катушка, находящаяся в магнитном поле, начинает двигаться с частотой подведенного сигнала, двигая, понятно, и всю подвижную систему, затем она и здесь. Но ведь катушка, двигающаяся в магнитном поле - это генератор. Который будет вырабатывать тем больше электричества, чем сильнее движется катушка. И когда частота станет приближаться к резонансной, на которой диффузор «хочет» колебаться, амплитуда колебаний возрастёт, и напряжение, производимое звуковой катушкой, будет расти. Достигнув максимума точно на резонансной частоте. Какое это отношение имеет к торможению? Пока никакого. Но представьте себе, что выводы катушки замкнули между собой. Теперь уже по ней потечёт ток и возникнет сила, которая по школьному правилу Ленца будет препятствовать движению, его породившему. А ведь звуковая катушка в реальной жизни замкнута на выходное сопротивление усилителя, близкое к нулю. Получается как бы электрический тормоз, приспосабливающийся к обстановке: чем с большим размахом пытается ходить туда-сюда диффузор, тем больше этому препятствует встречный ток в звуковой катушке. У колокола тормозов нет, кроме затухания вибраций в его стенках, а в бронзе - какое затухание...

Карта вторая, не измеряемая ни в чём

Мощность тормозов динамика численно выражается во втором параметре Тиля - Смолла. Это - полная добротность динамика, обозначается Qts. Выражается численно, но не буквально. В смысле, чем мощнее тормоза, тем меньше величина Qts. Отсюда и название «добротность» в русском (или quality factor в английском, из которого возникло обозначение этой величины), что это как бы оценка качества колебательной системы. Физически добротность - отношение упругих сил в системе к вязким, иначе - к силам трения. Упругие силы сохраняют энергию в системе, попеременно перегоняя энергию из потенциальной (сжатая или растянутая пружина или же подвес динамика) в кинетическую (энергия движущегося диффузора). Вязкие норовят энергию любого движения превратить в тепло и безвозвратно рассеять. Высокая добротность (а у того же колокола она будет измеряться десятками тысяч) означает, что упругих сил намного больше, чем сил трения (вязких, это одно и то же). Это же означает, что на каждое колебание в тепло будет переходить только малая часть энергии, запасённой в системе. Поэтому, кстати, добротность - единственная величина в тройке параметров Тиля - Смолла, не имеющая размерности, это отношение одних сил к другим. Как рассеивает энергию колокол? Через внутреннее трение в бронзе, главным образом, потихоньку. Как это делает динамик, у которого добротность намного меньше, а значит, темпы потери энергии гораздо выше? Двумя способами, по числу «тормозов». Часть рассеивается через внутренние потери в упругих элементах подвеса, и эту долю потерь можно оценить отдельной величиной добротности, она носит название механической, обозначается Qms. Вторая, большая часть рассеивается в виде тепла от тока, проходящего по звуковой катушке. Тока, ей же выработанного. Это - электрическая добротность Qes. Суммарное действие тормозов определялось бы очень легко, если бы в ходу были не величины добротности, а наоборот, величины потерь. Мы бы их просто сложили. А раз мы имеем дело с величинами, обратными потерям, то и складывать придётся обратные величины, поэтому и выходит, что 1/Qts = 1/Qms + 1/Qes.

Типичные значения добротностей: механическая - от 5 до 10. Электрическая - от 0,2 до 1. Поскольку в дело идут обратные величины, то получается, что мы суммируем механический вклад в потери порядка 0,1 - 0,2 с электрическим, составляющим от 1 до 5. Ясно, что итог будет определяться в основном электрической добротностью, то есть главный тормоз динамика - электрический.

Так как же вырвать у динамика имена «трёх карт»? Ну хотя бы двух первых, до третьей ещё доберёмся. Пистолетом, как Германн, грозить бесполезно, динамик не старуха. На помощь приходит всё та же звуковая катушка, пламенный мотор динамика. Ведь мы уже осознали: пламенный мотор подрабатывает и пламенным генератором. И в этом качестве как бы ябедничает об амплитуде колебаний диффузора. Чем большее напряжение появится на звуковой катушке как результат её колебаний вместе с диффузором, тем больше, значит, размах колебаний, тем ближе, значит, мы к резонансной частоте.

Как это напряжение измерить, притом что к звуковой катушке подведен сигнал от усилителя? То есть как разделить подведенное к мотору от выработанного генератором, это же на одних и тех же выводах? А не надо разделять, надо измерить получающуюся сумму.

Для этого поступают так. Динамик присоединяют к усилителю с возможно большим выходным сопротивлением, в реальной жизни это означает: последовательно с динамиком включают резистор с номиналом намного, в сто, как минимум, раз больше номинального сопротивления динамика. Скажем, 1000 Ом. Теперь при работе динамика звуковая катушка будет вырабатывать противо-ЭДС, вроде как для работы электрического тормоза, но торможения не произойдёт: выводы катушки замкнуты между собой через очень большое сопротивление, ток мизерный, тормоз - никудышный. Зато напряжение, по правилу Ленца противоположное по полярности подведенному («порождающему движение»), сложится с ним в противофазе, и если в этот момент измерить кажущееся сопротивление звуковой катушки, то покажется, что оно очень большое. На самом деле при этом противо-ЭДС не даёт току от усилителя беспрепятственно протекать по катушке, прибор это истолковывает как возросшее сопротивление, а как ещё?

Через измерение импеданса, того самого «кажущегося» (а на деле - комплексного, со всякими активными и реактивными составляющими, сейчас об этом не время) сопротивления и открываются две карты из трёх. Кривая импеданса любого диффузорного динамика, от Келлога и Райса до наших дней, выглядит, в принципе, одинаково, она даже фигурирует в логотипе какого-то электроакустического научного сообщества, сейчас забыл, какого. Горб на низких (для этого динамика) частотах обозначает частоту его основного резонанса. Где максимум - там и вожделенная Fs. Элементарнее не бывает. Выше резонанса наступает минимум полного сопротивления, его-то обычно и принимают за номинальное сопротивление динамика, хотя, как видите, оно остаётся таким только в небольшой полосе частот. Выше полное сопротивление начинает вновь расти, теперь уже из-за того, что звуковая катушка - не только мотор, но и индуктивность, сопротивление которой растёт с частотой. Но туда мы сейчас ходить не будем, там интересующие нас параметры не живут.

Куда сложнее с величиной добротности, но, тем не менее, исчерпывающая информация о «второй карте» тоже содержится в импедансной кривой. Исчерпывающая, потому что по одной кривой можно вычислить и электрическую Qes, и механическую добротность Qms, по отдельности. Как потом сделать из них полную Qts, реально необходимую при расчёте оформления, мы уже знаем, дело нехитрое, не бином Ньютона.

Как именно определяются искомые величины по импедансной кривой, мы обсудим в другой раз, когда разговор пойдёт о методах измерения параметров. Сейчас будем исходить из того, что кто-то (производитель акустики или соратники вашего покорного слуги) это за вас сделали. Но отмечу вот что. Существует два заблуждения, связанных с попытками экспресс-анализа параметров Тиля - Смолла по виду кривой импеданса. Первое - совсем лоховское, его мы сейчас развеем без следа. Это когда глядят на кривую импеданса с огромным горбом на резонансе и восклицают: «Ничего себе добротность!» Типа - высокая. А глядя на маленький пупырышек на кривой, заключают: раз пик импеданса так приглажен, значит, у динамика высокое демпфирование, то есть - низкая добротность.

Так вот: в самом простом варианте это ровно наоборот. Что означает высокий пик импеданса на частоте резонанса? Что звуковая катушка вырабатывает много противо-ЭДС, предназначенной для электрического торможения колебаний диффузора. Только при таком включении, через большое сопротивление, ток, необходимый для работы тормоза, не протекает. А когда такой динамик окажется включён не для измерений, а нормально, напрямую от усилителя, тормозящий ток пойдёт будь здоров, катушка станет могучим препятствием на пути неумеренных колебаний диффузора на его любимой частоте.

При прочих равных можно грубо оценить добротность по кривой, причём именно помня: высота импедансного пика характеризует потенциал электрического тормоза динамика, следовательно, чем он выше, тем НИЖЕ добротность. Будет ли такая оценка исчерпывающей? Не совсем, как было сказано, она останется грубой. Ведь в импедансной кривой, как уже говорилось, закопана информация и о Qes, и о Qms, выкопать которую можно (вручную или с помощью компьютерной программы), проанализировав не только высоту, но и «ширину плеч» резонансного горба.

А как добротность сказывается на форме АЧХ динамика, нас ведь именно это интересует? Как сказывается - решающим образом сказывается. Чем ниже добротность, то есть чем мощнее внутренние тормоза динамика на резонансной частоте, тем ниже и более плавно спадая, пройдёт вблизи резонанса кривая, характеризующая создаваемое динамиком звуковое давление. Минимальная неравномерность в этой полосе частот будет при Qts, равной 0,707, что принято называть характеристикой Баттерворта. При высоких значениях добротности кривая звукового давления начнёт «горбиться» вблизи резонанса, понятно почему: тормоза слабые.

Бывает ли «хорошая» или «плохая» полная добротность? Сама по себе - нет, потому что, когда динамик окажется установлен в акустическое оформление, в качестве которого сейчас будем рассматривать только закрытый ящик, и частота его резонанса, и полная добротность станут другими. Почему? Потому что и то и то зависит от упругости подвеса динамика. Резонансная частота зависит только от массы подвижной системы и жёсткости подвеса. С ростом жёсткости Fs растёт, с ростом массы - падает. Когда динамик установлен в закрытый ящик, воздух в нём, обладающий упругостью, начинает работать дополнительной пружиной в подвесе, общая жёсткость повышается, Fs растёт. Растёт и полная добротность, поскольку она - отношение упругих сил к тормозящим. Возможности тормозов динамика от его установки в некий объём не изменятся (с чего бы?), а суммарная упругость - возрастёт, добротность - неизбежно возрастёт. И никогда не станет ниже, чем была у «голого» динамика. Никогда, это - нижний предел. Насколько всё это возрастёт? А это зависит от того, насколько жёсткий у динамика собственный подвес. Смотрите: одно и то же значение Fs можно получить при лёгком диффузоре на мягком подвесе или при тяжёлом - на жёстком, масса и жёсткость действуют в противоположных направлениях, а итог может оказаться численно равным. Теперь если мы поставим в какой-то объём (обладающий полагающимся этому объёму упругостью) динамик с жёстким подвесом, то он небольшого возрастания суммарной жёсткости и не заметит, величины Fs и Qts изменятся не сильно. Поставим туда же динамик с мягким подвесом, по сравнению с жёсткостью которого «воздушная пружина» будет уже существенной, и увидим, что суммарная жёсткость изменилась сильно, а значит, Fs и Qts, исходно такие же, как у первого динамика, изменятся существенно.

В тёмные «дотилевские» времена для расчёта новых значений частоты резонанса и добротности (они, чтобы не путать с параметрами «голого» динамика, обозначаются как Fc и Qtc) нужно было знать (или измерить) непосредственно упругость подвеса, в миллиметрах на ньютон приложенной силы, знать массу подвижной системы, а потом мудрить с программами расчёта. Тиль предложил концепцию «эквивалентного объёма», то есть такого объёма воздуха в закрытом ящике, упругость которого равна упругости подвеса динамика. Эта величина, обозначаемая Vas, и есть третья волшебная карта.

Карта третья, объёмная

Как измеряют Vas - история отдельная, там есть забавные повороты, и об этом, как говорю уже в третий раз, будет в специальном выпуске серии. Для практики важно понять две вещи. Первая: предельно лоховское заблуждение (увы, тем не менее встречающееся), что приведенное в сопроводительных документах к динамику значение Vas - это объём, в который динамик надо ставить. А это всего лишь - характеристика динамика, зависящая только от двух величин: жёсткости подвеса и диаметра диффузора. Если поставить динамик в ящик с объёмом, равным Vas, резонансная частота и полная добротность возрастут в 1,4 раза (это квадратный корень из двух). Если в объём, равный половине Vas - в 1,7 раза (корень из трёх). Если сделать ящик объёмом в одну треть от Vas, всё остальное возрастёт вдвое (корень из четырёх, логика должна быть уже понятна и без формул).

В результате, действительно, чем меньше при прочих равных величина Vas у динамика, тем на более компактное оформление можно рассчитывать, сохраняя плановые показатели по Fc и Qtc. Компактность, однако, не даётся бесплатно. В акустике бесплатного вообще не бывает. Малое значение Vas при той же резонансной частоте динамика - результат сочетания жёсткого подвеса с тяжёлой подвижной системой. А от массы «подвижки» самым решительным образом зависит чувствительность. Поэтому все сабвуферные головки, отличающиеся возможностью работы в компактных закрытых корпусах, характеризуются и низкой чувствительностью по сравнению с коллегами с лёгкими диффузорами, но большими значениями Vas. Так что хороших и плохих значений Vas тоже не бывает, всему своя цена.

Подготовлено по материалам журнала "Автозвук", март 2005 г. www.avtozvuk.com

Рассказать друзьям