Интернет: как это работает? Как работает Интернет. Руководство для чайников Как работает интернет для чайников

💖 Нравится? Поделись с друзьями ссылкой

Как работает интернет?



Интернет - это международная система компьютерных сетей, построенная на базе IP и маршрутизации IP-пакетов. За счет сложной, очень разветвленной системы интернет позволяет охватить миллионы компьютеров во всем мире. Предлагаем вам узнать, как работает интернет.

Структура интернета

По всему миру в офисах компаний, государственных учреждений, в частных домах и квартирах стоят компьютеры. Отдельными группами они объединяются в небольшие локальные сети (от сети компьютеров в какой-то организации до городской сети). Те в свою очередь включаются в более крупные сети - региональные, национальные. Они также являются частью, только уже еще более масштабных сетей — континентальных. Эти сети соединяются между собой колоссальным по параметрам подводным трансатлантическим оптоволоконным кабелем. За счет этого, например, компьютер, стоящий в Орле, связан с компьютером в Ванкувере. Пользователи этих двух ПК посредством интернета могут общаться друг с другом.

Что касается того, как работает интернет на международном, общемировом уровне, то это достигается за счет глобальной сети — совокупности всех компьютеров мира, соединенных между собой с помощью интернета. Размеры ее поистине колоссальны, ведь она охватывает практически всю планету за исключением редких уголков, которые в силу географических, социальных, политических и прочих причин не имеют возможности работать с подобным ресурсом.

Кроме того, имеются достаточно крупные сети, не соединенные или соединенные лишь частично вместе с другими сетями мирового интернета. Например, такова ситуация в Северной Корее. В этой стране доступ к «Всемирной паутине» осуществляется исключительно по разрешению властей, а потому право на него имеют редкие чиновники высшего ранга. Внутри же самой страны работает внутренняя сеть под названием «Кванмен», которая стала доступна местным гражданам не так давно. Количество информации и ее характер жестко контролируются властями республики.

Как работает сеть интернет: составляющие элементы

Любое обращение к интернету (когда мы ищем какую-то информацию, открываем сайты и проч.) — это сложная цепочка последовательных действий, происходящих в сети. Причем каждый подобный процесс предполагает наличие обязательных составляющих. Далее мы кратко остановимся на них.

Пользователь

Или какая-то автоматическая программа, посылающая запросы в интернет для получения информации.

Компьютер

Или любое другое средство выхода в интернет, например, телефон, планшет. Без таких устройств выйти в сеть нельзя.

Интернет-провайдер

Это коммерческая организация, компания, открывающая доступ к интернету для отдельных компьютеров. В каждом городе, стране имеются свои провайдеры. При этом все провайдеры мира делятся на 3 большие категории.

  • Первая - это владельцы какой-то доли мирового интернета, располагающие обычно своими оптоволоконными сетями, по которым они и передают трафик (то есть заданный объем информации, которую можно получить через интернет) сетевым провайдерам низшей группы.
  • Вторая - это компании национального уровня или регионального (созданные несколькими соседними странами). Например, это "Ростелеком".
  • Третья - это все остальные участники рынка, представленные менее крупными фирмами-провайдерами в городах и областях.

Финансовые взаимоотношения, определяющие, в частности, количество полученного трафика между всеми этими группами (а особенно между первой и второй категориями) провайдеров очень сложны. Здесь нередко играют роль не только экономические моменты, но и личные интересы, политика и проч.

Браузер

Это программа-клиент для работы в интернете, которую можно установить либо с диска, либо скачав через тот же интернет. Самыми популярными браузерами являются Google Chrome, Internet Explorer, Mozilla Firefox, Safari, Opera.

Пользователь может установить на свой ПК абсолютно любой браузер или даже несколько программ - по желанию. У каждой программы имеются свои особенности, плюсы и минусы.

Домен

Под этим понятием подразумевается некая зона в сети интернет, занятая тем или иным сайтом. Соответственно, у каждой страницы в интернете есть свое неповторимое доменное имя - адрес, по которому вы можете найти сайт в сети.

Запустив браузер, в адресной строке вы вводите именно доменное имя нужного вам ресурса. После этого система обращается с соответствующим запросом к сети интернет-провайдера. У провайдера установлен сервер типа DNS (Domain Name System), который позволяет перекодировать доменное имя сайта в IP-адрес. IP-адрес (Internet Protocol Address) - это уникальный адрес какой-то зоны в интернете, представленный, в отличие от доменного имени, в виде цифр. К слову, IP-адрес имеют не только сайты, но и сами компьютеры. Каждому ПК IP-адрес присваивает интернет-провайдер, предоставляющий доступ к сети. Это делается для того, чтобы иметь возможность поставлять трафик по нужному адресу, то есть к каждому конкретному ПК, а также чтобы решать какие-то проблемы в обслуживании.

После этого IP-адрес сайта перекодируется из десятичной системы вычисления в двоичную (с участием 0 и 1). В этом виде провайдер посредством сервера отправляет запрос о получении информации с нужного пользователю сайта на маршрутизатор.

Маршрутизатор

Другое название данного устройства - роутер. Оно обеспечивает передачу информации по каналу сети. Можно сказать, что маршрутизатор является двоюродным братом GPS-навигатора, используемого в жизни. Зная расположение двух точек (в случае с интернетом это компьютер пользователя и сайт в интернете), маршрутизатор прокладывает нужный путь между ними, чтобы обеспечить обмен информацией.

Передача информации осуществляется от одного маршрутизатора к другому вплоть до конечной точки - сервера.

Сервер

Мощный компьютер, который может выполнять в зависимости от его вида следующие задачи:

  • Обеспечивает получение компьютерами сети интернет-трафика.
  • Занимается перекодировкой доменных имен в IP-адреса.
  • Хранит данные. Например, это может быть сервер с данными пользователей какой-то электронной почты: входящими и исходящими письмами, письмами в корзине и в папке со спамом, информация из адресных книг и проч.
  • Размещает в своей памяти информации о различных сайтах сети, всех данных на них. Такие серверы называются хостингами.

Соответственно, в нашем примере запрос на открытие сайта будет передан через маршрутизаторы на соответствующий хостинг, хранящий информацию об искомой интернет-странице. Ответ сервера будет передан по обратной цепочке (через маршрутизаторы, интернет-провайдера и браузер) на ПК.

Однако прежде чем результат высветится на мониторе, для передачи информации будет использован один из многочисленных портов, которые использует ПК.

Порт

Это системный ресурс, выделяемый приложению для связи с другими приложениями в сети. То есть, поступая на определенный IP-адрес, те или иные данные затем расходятся по разным портам. Так, существует порт для отправки электронной почтой и отдельно - для ее получения.

Для работы с веб-сайтами также существует отдельный порт. Он анализирует полученную информацию и отправляет ее в браузер. В результате перед нами открывается желанная страница.

На деле весь описанный процесс длится не более пары секунд. Вы сами можете это оценить, попробовав открыть какой-нибудь сайт. Страница появится перед вами буквально через мгновение после того, как вы введете ее доменное имя в адресную строку или, допустим, впишете какой-то запрос в окно поиска браузера.

Подборка актуальных книг по современным сетям, где каждый - от новичка до профессионала - найдет для себя что-то полезное.

В. Олифер, Н. Олифер «Компьютерные сети. Принципы, технологии, протоколы. Учебник» (2016)

Эта книга - один из лучших российских учебников по сетям. Со времени выхода предыдущего издания она претерпела значительные переработки, включив в себя изменения, которые произошли в области компьютерных сетей за последние шесть лет:

  • преодоление локальными и глобальными сетями рубежа скорости в 100 Гбит/c и освоение терабитных скоростей;
  • повышение эффективности и гибкости первичных оптических сетей за счет появления реконфигурируемых мультиплексоров ввода-вывода (ROADM) и применения супер-каналов DWDM, работающих на основе гибкого частотного плана;
  • развитие техники виртуализации сетевых функций и услуг, приведшей к распространению облачных сервисов;
  • выход на первый план проблем безопасности.

Издание рекомендовано Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов вузов, обучающихся на технических специальностях. Оно предназначено для студентов, аспирантов и технических специалистов, которые хотели бы получить базовые знания о принципах построения компьютерных сетей, понять особенности традиционных и перспективных технологий локальных и глобальных сетей, изучить способы создания крупных составных сетей и управления такими сетями.

Э. Таненбаум, Д. Уэзеролл «Компьютерные сети» 5-е изд. (2016)

Новейшее издание самой авторитетной книги по современным сетевым технологиям, написанное признанным экспертом в этой области Эндрю Таненбаумом в соавторстве с профессором Вашингтонского университета Дэвидом Уэзероллом.

Первая версия этой книги увидела свет в 1980 году. С тех пор данный труд стал классическим, каждое его издание неизменно становилось бестселлером.

В книге последовательно изложены основные концепции по компьютерным сетям, определяющие современное состояние и тенденции развития. Авторы подробнейшим образом объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до уровня прикладных программ. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования Интернета и компьютерных сетей различного типа.

Пятое издание переработано и дополнено в соответствии с последними изменениями в сфере компьютерных сетей. В частности оно освещает беспроводные сети стандарта 802.12 и 802.16, сети 3G, пиринговые сети и многое другое.

Д. Куроуз, К. Росс «Компьютерные сети. Нисходящий подход» (2016)

Данная книга идеально подойдет начинающим изучение сетевых технологий. Она знакомит с основами построения и функционирования компьютерных сетей на примере пятиуровневой архитектуры сети Интернет. В ней описаны базовые компоненты сети, основные принципы передачи данных, технологии взаимодействия сетей между собой. Отдельная глава посвящена особенностям беспроводных сетей.

Весь материал книги сопровождается примерами и материалом для самостоятельного выполнения упражнений. Пособие универсально и подойдет как студентам, так и системным администраторам, а также всем желающим начать изучение компьютерных сетей или улучшить свои знания в этой области.

А. Сергеев «Основы локальных компьютерных сетей» (2016)

В этом учебном пособии рассматриваются теоретические основы и технологии по локальным компьютерным сетям и их построению. Излагаются вопросы:

  • базовых понятий, моделей и способов построения компьютерных сетей;
  • организации стека протоколов TCP/IP (IPv4 и IPv6);
  • создания серверов общего доступа и служб для IP-сетей (DNS, электронная почта, веб и др.)

Отдельное внимание уделяется вопросам организации локальных сетей на Windows (рабочая группа и домен), физического построения кабельных и беспроводных локальных сетей.

Д. Куроуз, Т. Росс «Компьютерные сети. Настольная книга системного администратора» (2016)

Всемирно известная книга, пережившая шесть переизданий и на протяжении 15 лет возглавляющая рейтинги продаж по всему миру. Несмотря на свой долгий путь, она ничуть не утратила актуальности и продолжает оставаться незаменимым источником знаний для людей, чья работа связана с организацией компьютерных сетей.

Это издание расскажет:

  • как функционирует интернет и локальные сети;
  • как работают сетевые протоколы и службы;
  • об алгоритмах маршрутизации;
  • о сетевой безопасности и основах криптографии;
  • об основах сетевой администрации.

А. Робачевский «Интернет изнутри. Экосистема глобальной сети» (2017)

Автор книги Андрей Робачевский работал в составе команды по созданию федеральной университетской компьютерной сети России RUNNet. Сейчас он руководит программами, направленными на улучшение безопасности и стабильности инфраструктуры глобального Интернета, а также является председателем программного комитета евразийской группы операторов ENOG.

Книга рассказывает об архитектуре и технологиях Интернета, фокусируясь на его основных компонентах: глобальной адресации и протоколе IP, системе доменных имен и глобальной межсетевой маршрутизации. Рассматриваются аспекты и принципы работы Всемирной сети, вопросы стандартизации, развития и безопасности основных систем Интернета. Обсуждается архитектурная эволюция Интернета в целом, а также связанные с ней вопросы внедрения новых протоколов и технологий.

Особое внимание уделено экосистеме Интернета, ее истории, а также основным организациям, включенным в систему принятия решений в Интернете.

Сэмюэл Грингард предлагает, не откладывая, отправиться в будущее и поразмыслить над важными вопросами, ответы на которые нам вскоре будут буквально жизненно необходимы.

Интернет вещей, умный дом и прочие вещи, еще совсем недавно казавшиеся научной фантастикой, сегодня стали одним из главных трендов текущего времени. Все необходимые технологии уже выходят в серийное производство.

Добрый день, друзья! В прошлой статье, мы узнали, . Теперь, давайте разберем, как устроен интернет? У большинства людей по данному вопросу ошибочное мнение. Многие люди считают, что интернет – это просто цепь подключенных между собой компьютеров.

Это и правда, и нет. Интернет не просто сеть подключенных друг к другу компьютеров посредством различных кабельных сетей и телефонных линий. Это ещё и сервера, передающие информацию, и суперкомпьютеры, обрабатывающие, передающие и хранящие данную информацию и прочее.

Интернет, это набор сетей, которые функционируют, как одна. Это последовательность подобных сетей, которые появились в Америки, чтобы мегакомпьютеры различных университетов и исследовательских центров взаимодействовали между собой. Это опорная сеть, которую финансирует национальный научный фонд Америки.

Со времени первых линий, пользоваться которыми могло небольшое число людей, глобальная сеть переросла в сеть, которая, как паутина опутала весь мир. Теперь доступ к ней появился практически у каждого желающего подключиться человека.

Чтобы легче проходить по линиям сети, данные разбиваются специальным протоколом TCP/IP на пакеты нужного объёма. Когда данные пакеты идут к нужному месту, они идут по множеству различных сетей и уровней.

От одной точки до другой, подобные пакеты могут дойти разными путями. Чаще всего, выбирается ближайший. Но если отдельный сервер переполнен информацией или не функционирует, пакет может его обойти и прибыть в нужное место иным путём.

Такой пакет информации может проходить региональные сити, локальные, различные маршрутизаторы, хабы, повторители, шлюзы и мосты. Региональные сети отличаются от локальных тем, что имеют возможность передавать данные, без входа в интернет.

Повторитель занимается предотвращением потухания сигнала, повышая его и передавая далее данные, которые получил. Хабы занимаются соединением ПК в сеть, давая им возможность обмениваться информацией между собой.

Мосты занимаются соединением сетей, помогая им осуществлять передачу информации. Особый вид подобного моста, шлюз, занимается преобразованием сообщений среди сетей различных типов (к примеру, среди сетей Apple и Windows).

Кто поставляет услуги интернета

Предоставляют интернет людям компании поставщики, вроде Internet Service Provide. Таким компаниям принадлежат блоки адресов Internet. Они их предоставляют клиентам. Человек подсоединяет свой ПК к подобному поставщику, его тут же соединяет с сервером.

Сервер соединён с интернетом, благодаря устройствам, называющимися Маршрутизаторами. Маршрутизатор – это прибор, получающий информацию от узлов сети и определяющий её адрес назначения в сети и наиболее выгодный путь по доставке данных к нужному адресу.

Подобный маршрут происходит с помощью известных путей в Internet и объема трафика на различных частях сегмента. Затем, маршрутизатор отдаёт информацию в нужную точку сети – Network Access Point. Сервисы включают в себя:

  1. Электронную почту посредством серверов SMTP и POP
  2. Услугу идентификации компьютера благодаря IP адресу.
  3. Путь с применением серверов DNS.
  4. Услугу новостной службы благодаря сервирам Usenet.

Как устроен интернет и его IP адрес

Я думаю, многие из вас знают, что такое IP адрес и для чего он нужен. Даже знают собственный IP. Но я всё же сделаю пояснения. Провайдеры дают своим клиентам IP адрес для соединения компьютеров с интернетом. Их ещё называют адреса протокола IP.

IP адрес проводит идентификацию ПК человека в интернете, давая ему возможность получать различные данные из глобальной сети. Я думаю, многие из вас знают, что большая часть пользователей используют протокол IPv4. Но всё больше людей переходят на протокол IPv6.

Как устроен интернет с адресом IPv4

В конце 20 века преобладал протокол IPv4. Данная версия IP даёт адрес вида – XXX.YYY.ZZZ.AAA. Группы символов представляют трехзначную цифру в десятичном формате. Число может быть 8 – битное и формат двоичный.

Он носит название – Десятичное представление с разделительными точками. Группа же называется – октет. Десятичные цифры образуются из двоичных. С двоичными работает система компьютера. К примеру, адрес 106.122.115.102 в десятичном будет выглядеть как 01101010. 01111010. 01110011. 01100110.

Не пытайтесь разобрать в этом суть и смысл. Есть специальные таблицы кодов. Кому интересно, как выглядит его IP в десятичном виде, он может это узнать по ссылке.

IP адрес включает в себя адрес узла и сети. Соответственно, адрес сети проводит идентификацию всей сети, а адрес узла – отдельного узла в данной сети: сервер, рабочую станцию или маршрутизатор. Локальную сеть делят на 3 класса: A,B,C. Сетевая часть IP определяет принадлежность сети к её классу.

Как устроен интернет три класса сетей


Класс А занят крупными сетями. Сетевая часть применяет 8 битов, узловая 24 бита IP. У старшего бита первый октет = 0. Далее, идёт комбинация из любых других семи битов. Отсюда, IP А класса имеет диапазон: 001.х.х.х-126.х.х.х. Это даёт возможность появлению 126 сетей или 17000000 узлов.

Класс В даётся среднего размера сетям. Суть начальных октетов находится в пределах 128.х.х.х – 191.254.0.0. что даёт возможность появления 16384 сетей. Любой из подобных сетей может принадлежать 65534 узлов.

Класс С нужен для сетей, число узлов которых довольно мало. Сетевой элемент состоит из первых трех октетов. Адрес же сети – октетом последним. Суть первых 3-х октетов находится в диапазоне 192.х.х.х – 223.254.254.0. Отсюда, к классу С относится около 2000000 сетей. Каждой из данных сетей может принадлежать 254 узлов.

Как устроен интернет с адресом IPv6

Я думаю, вам понятно, что протокол IPv6 создан из-за банальной нехватки IP адресов, т.к. число пользователей интернета значительно возросло. Данный адрес равен 128 битам и 16 байтам. Это значительно увеличивает число IP.

IPv6, кроме прочего, проверяет подлинность пакета отправителя, и шифрование подобного пакета. Данный протокол поддерживают ОС от Windows 7 до Windows 10 и часть дистрибутивов Linux. IPv6 в последнее время применяют всё больше. Также, мобильные телефоны поддерживают данный протокол, автомобильные компьютеры и прочие устройства.

IPv6 состоит из 8 групп четырехзначных шестнадцатеричных цифр, которые разделены двоеточием: 1045: 0аке: 4df3: 56uy: 0045: ert1: g56j: 0001. Что интересно, группы, где одни нули, могут писаться просто двоеточием, но не более двух двоеточий.

Иногда нули даже отпускаются. URL адрес такого вида обязательно заключается в квадратные скобочки: — http://.

Как устроен интернет подсети

Узлы сети группируются в подсети, их назвали интрасетями. Каждая часть интрасети должна иметь защитный шлюз, выполняющий роль точек для входа и выхода сегмента. Функцию шлюза выполняет прибор, называющийся – маршрутизатором.

Маршрутизатор представляет интеллектуальный прибор, пересылающий информацию получателю. Часть сетей в виде шлюза использует защитный сетевой экран, firewall (брандмауэр).

Firewall это комбинация различных компонентов, программных и аппаратных, которые создают барьер для защиты вашего ПК. Брандмауэр можно сравнить с дверью в интернет. Она может быть открытой для части программ, приоткрытой и закрытой. Именно firewall, а не антивирус не даёт попасть вирусу на компьютер. Поэтому, firewall должен быть установлен на каждом ПК. Антивирус же просто лечит уже зараженную систему. Наилучший вариант – это антивирус со встроенным файрволлом.

Можно провести настройку файрволла так, чтобы он пропускал информацию лишь на необходимые порты и адреса. Чтобы создать подсеть, маскируют сетевую часть IP адреса узла. Отсюда, мобильность информации ограничивают узлами подсети, т.к. данные узлы распознают адреса в определенном замаскированном диапазоне.

Причины создания подсети

  1. Эффективное использование IP адресов. Когда используют 32 битный адрес, получается ограниченное число адресов. На первый взгляд, 126 сетей и 17000000 узлов кажется приличным количеством, но, в глобальном масштабе это не много.
  2. Изоляция различных сегментов сети. К примеру, у сети имеется 1000 ПК. Если не применять сегментацию, информация пройдёт через все 1000 ПК. Можете представить, какую нагрузку в это время испытывает канал связи. Также, все пользователи сети получат доступ и информации всех её участников.
  3. Для повторного использования одного IP. К примеру, если разделить адреса класса С в двух местах подсети, можно дать каждой подсети одну вторую часть адресов сети. Отсюда, две подсети смогут применять один IP класса С.

Для создания подсети, необходима блокировка цифрами части или всех битов данного IP. К примеру, маска, имеющее значение 254 будет блокировать все адреса октета, кроме одного. Значение 255, заблокирует весь октет.

Чтобы создать подсеть класса А, подойдёт маска 255.0.0.0. Класса В – 255.255.0.0. Класса С 255.255.255.0. Чтобы узнать свой IP адрес, достаточно в поисковик ввести «Узнать IP адрес» и вы в течение секунды узнаете свой IP.

Что такое хостинги

Я забыл упомянуть про хостинги, где располагаются сайты, с которых мы получаем большинство информации. Хостинги — это тоже суперкомпьютеры, в которых, как в ячейках, находятся сайты. Хостинги также дают и получают информацию, точнее, это делают сайты и блоги, которые в них находятся. Даже Яндекс с Google находятся в суперкомпьютерах и имеют множество своих серверов по всему миру.

Рекордсмен в этом деле поисковая система Google. У неё по всему миру тысячи своих серверов и все они соединены между собой с помощью оптиковолоконных или просто телефонных линий. Это действительно похоже на гигантскую сеть (или паутину), которая опутала весь мир. Недаром, интернет называют Глобальной сетью! И удивительно, как быстро данная Глобальная сеть распространяется по всему миру!

Я надеюсь, теперь вам понятно, как устроен интернет. Успехов!

Домашняя локальная сеть становится все более обыденным и привычным явлением. Прошли те времена, когда при фразе «локальная сеть» перед глазами возникал образ небритого бородатого системного администратора, любящего пиво и шокирующего непонятными терминами. Во многих семьях у каждого члена семьи есть свой компьютер, и многие задумываются о том, как объединить все компьютеры в единую домашнюю сеть. Создать домашнюю локальную сеть не сложно, и цикле статьей на сайт описываются все необходимые аппаратные и программные средства, позволяющие создать высокоэффективную домашнюю сеть.

Из чего состоит локальная сеть

В общем случае, любая сеть состоит из нескольких компьютеров (2 и больше), предоставляющих совместный доступ к своим устройствам или программам. Сеть делает возможным взаимодействие компьютеров и установленных на них программ, за счет чего пользователи компьютеров могут работать совместно в единой сетевой среде.

Под совместным доступом можно понимать возможность единовременного или последовательного доступа нескольких пользователей к одному ресурсу или устройству. Например, в домашней сети совместный доступ может быть реализован к принтеру, сканеру, оптическому накопителю, модему, факсу, какой-либо программе, а также Интернету. Классический пример совместного доступа – это сетевая компьютерная игра, когда каждый компьютер имеет доступ к версии компьютерной игры на другом компьютере.

Существует несколько типов сетей, и локальная сеть – лишь одна из них. Локальная сеть представляет собой, по сути, сеть, используемую в одном здании или отдельном помещении, таком как квартира, для обеспечения взаимодействия используемых в них компьютеров и программ. Локальные сети, расположенные в разных зданиях, могут быть соединены между собой с помощью спутниковых каналов связи или волоконно-оптических сетей, что позволяет создать глобальную сеть, т.е. сеть, включающую в себя несколько локальных сетей.

Интернет является еще одним примером сети, которая уже давно стала всемирной и всеобъемлющей, включающей в себя сотни тысяч различных сетей и сотни миллионов компьютеров. Независимо от того, как вы получаете доступ к Интернету, с помощью модема, локального или глобального соединения, каждый пользователь Интернета является фактически сетевым пользователем. Для работы в Интернете используются самые разнообразные программы, такие как обозреватели Интернета, клиенты FTP, программы для работы с электронной почтой и многие другие.

Для совместной работы даже двух компьютеров недостаточно каким-то образом соединить их между собой. Для того чтобы физическое соединение стало работоспособным, необходимо использовать специальные сетевые программы. Итак, рассмотрим, что включает в себя каждая сеть:

  • физические объекты сетевого взаимодействия, т.е. компьютеры или другие сетевые устройства (например, КПК или мобильные телефоны, имеющие сетевые интерфейсы);
  • физическое соединение (кабель) или беспроводное соединение (инфракрасное или радиочастотное) между компьютерами или другими устройствами;
  • операционная система, с помощью которой организовывается совместный доступ к компьютерам и/или другим устройствам; это может быть как домашняя операционная Windows XP/Vista/7, так и специализированная сетевая операционная система Windows Server.
  • общий набор используемых сетевых протоколов;
  • сетевые клиенты, т.е. программы, с помощью которых один компьютер может получить доступ к другому компьютеру.

Давайте посмотрим, для чего может использоваться сеть обычными домашними пользователями:

  • доступ к Интернету;
  • работа с электронной почтой;
  • общий доступ к любым файлам;
  • общий доступ к различным устройствам (жестким дискам, оптическим накопителям, принтерам);
  • сетевое текстовое и голосовое общение;
  • сетевое видеообщение;
  • удаленная работа;
  • совместная работа над каким-то проектом;
  • резервирование и копирование данных.

Локальная сеть призвана объединить все домашние (или офисные) компьютеры в единое целое. Так игрок становится частью футбольной команды и множество солдат формируют батальон. Благодаря локальной сети все домашние компьютеры смогут обмениваться друг с другом данными и получат выход в Интернет. Сетевые компьютерные игры, общий файловый архив, общения и развлечения – все это вам подарит компьютерная сеть.

Прежде чем поговорить о конкретных устройствах, которые понадобятся для организации локальной сети, рассмотрим основные типы современных локальных сетей.

Типы локальной сети

В целом, существуют два основных типа локальной сети – децентрализованная сеть и сеть клиент-сервер.

Рассмотрим схему простейшей децентрализованной сети, показанной далее. Представим, что в вашей квартире есть 2 компьютера и 1 ноутбук, причем на каждом компьютере установлена операционная система Windows XP. Для того чтобы организовать децентрализованную сеть, необходимо, чтобы у каждого компьютера был сетевой адаптер. Практически все современные материнские платы и ноутбуки имеют такой вход (а то и два), так что ничего лишнего приобретать не потребуется. Если ж вам досталось нечто совсем уж «древнее», приобретите плату сетевого адаптера, которая устанавливается в разъем PCI или PCI-E.

Это общая схема децентрализованной сети. Обратите внимание, что в реальности компьютеры соединяются не так – им понадобится коммутатор (см. далее). На что сделан акцент в этой схеме – в том, что это именная децентрализованная сеть. Все компьютеры взаимодействуют друг с другом без участия сервера .

А вот схема этой же сети, но уже типа “клиент-сервер” .

Подробнее об оборудовании рассказывается в статье « ».

Нужно установить и драйвер. Драйверы поставляются на компакт-дисках вместе с сетевыми адаптерами или системными платами. Кроме того, драйверы для множества популярных сетевых адаптеров изначально поддерживаются в Windows XP, Windows Vista и Windows 7, так что нередко и устанавливать ничего не потребуется.

После установки сетевых адаптеров и драйверов остается физически соединить между собой компьютеры с помощью кабеля или беспроводного соединения. В проводной сети чаще всего используется кабель Ethernet категории 5. Для физического соединения двух компьютеров понадобится только один кабель, если же компьютеров больше трех, вам понадобится специальное устройство, которое называется коммутатор , он же switch (или беспроводная точка доступа, если вы решили создать сеть без проводов).

Два ноутбука и настольный компьютер, соединенные в децентрализованную сеть через коммутатор .

Следует учитывать, что для соединения между собой толькодвух компьютеров (без коммутатора) необходимо использовать кабель со специальным перекрестным соединением («crossover »). Для соединения более чем двух компьютеров применяется стандартный кабель Ethernet .

Децентрализованные сети чаще всего используются в домашних сетях. Преимущество такой сети – в отсутствии необходимости приобретения компьютера для работы, например, в качестве файлового сервера, ведь файлы располагаются на всех компьютерах в сети.

Топология локальной сети

Каждый компьютер в сети подключается к другим компьютерам с помощью кабеля или беспроводного соединения. Схема физического подключения компьютеров в сети называется сетевой топологией. Всего существуют три основные топологии: «шина», «кольцо» и «звезда».

  • Шина . Каждый компьютер в сети подключен последовательно к другому компьютеру в линейной последовательности. Сеть начинается с сервера или основного компьютера и завершается последним компьютером сети.
  • Кольцо . Каждый компьютер подключен к другому компьютеру в кольцевой сети.
  • Звезда . Каждый компьютер в сети подключен к центральной точке обмена данными.

Первые две топологии, шина и кольцо, были разработаны много лет назад и в настоящее время утратили свою популярность. Основной топологией современных локальных сетей является топология «звезда».

Основное преимущество этой топологии, основанной на технологии Ethernet, – расширяемость сети. На основе компьютеров, оснащенных сетевым адаптером Ethernet, можно создать сеть топологии «звезда», содержащую до 1024 компьютеров, подключенных к коммутатору или концентратору с использованием разъема RJ-45. Создание подобной сети не занимает много времени при условии, что настройка сетевой операционной системы была выполнена должным образом.

Домашняя сеть с топологией «звезда» .

Для создания сети Ethernet требуется установить на компьютерах совместимые операционные системы (например, Windows XP), сетевые адаптеры с нужными драйверами, сетевой кабель (или адаптеры беспроводного соединения), а также коммутатор или концентратор.

Теперь представим, что вы установили в квартире коммутатор с 5 разъемами и подключили к нему компьютеры всех своих родных и близких. В результате свободных портов у коммутатора не осталось. При этом вам бы очень хотелось подключить еще и соседей по этажу, чтобы обмениваться с ним файлами и играть в компьютерные стратегические игры. Выходом будет все та же топология «звезда». Достаточно к специальному порту первого коммутатора подключить второй коммутатор, как вы получите возможность использовать свободные порты. Таким образом, благодаря схеме связующего древа , можно расширять вашу сеть практически до бесконечности. Именно по такому принципу создаются современные домашние сети.

Итак, подытожим, какие именно физические устройства требуются для создания локальной сети:

  • сетевые адаптеры;
  • коммутаторы;
  • кабели (или радиочастотные каналы для беспроводной сети).

Коммутатор не выпустит вас в Интернет:) Поэтому не путайте его с маршрутизатором – устройством, которое предназначено для обеспечения доступа из локальной сети в глобальную.

Подробнее о маршрутизаторах и другом оборудовании рассказывается в статье « ».

Данная статья посвящена основам локальной сети , здесь будут рассмотрены следующие темы:

  • Понятие локальная сеть;
  • Устройство локальной сети;
  • Оборудование для локальной сети;
  • Топология сети;
  • Протоколы TCP/IP;
  • IP-адресация.

Понятие локальной сети

Сеть — группа компьютеров, соединенных друг с другом, с помощью специального оборудования, обеспечивающего обмен информацией между ними. Соединение между двумя компьютерами может быть непосредственным (двухточечное соединение ) или с использованием дополнительных узлов связи.

Существует несколько типов сетей, и локальная сеть — лишь одна из них. Локальная сеть представляет собой, по сути, сеть, используемую в одном здании или отдельном помещении, таком как квартира, для обеспечения взаимодействия используемых в них компьютеров и программ. Локальные сети, расположенные в разных зданиях, могут быть соединены между собой с помощью спутниковых каналов связи или волоконно-оптических сетей, что позволяет создать глобальную сеть, т.е. сеть, включающую в себя несколько локальных сетей.

Интернет является еще одним примером сети, которая уже давно стала всемирной и всеобъемлющей, включающей в себя сотни тысяч различных сетей и сотни миллионов компьютеров. Независимо от того, как вы получаете доступ к Интернету, с помощью модема, локального или глобального соединения, каждый пользователь Интернета является фактически сетевым пользователем. Для работы в Интернете используются самые разнообразные программы, такие как обозреватели Интернета, клиенты FTP, программы для работы с электронной почтой и многие другие.

Компьютер, который подключен к сети, называется рабочей станцией (Workstation ). Как правило, с этим компьютером работает человек. В сети присутствуют и такие компьютеры, на которых никто не работает. Они используются в качестве управляющих центров в сети и как накопители информации. Такие компьютеры называют серверами,
Если компьютеры расположены сравнительно недалеко друг от друга и соединены с помощью высокоскоростных сетевых адаптеров то такие сети называются локальными. При использовании локальной сети компьютеры, как правило, расположены в пределах одной комнаты, здания или в нескольких близко расположенных домах.
Для объединения компьютеров или целых локальных сетей, которые расположены на значительном расстоянии друг от друга, используются модемы, а также выделенные, или спутниковые каналы связи. Такие сети носят название глобальные. Обычно скорость передачи данных в таких сетях значительно ниже, чем в локальных.

Устройство локальной сети

Существуют два вида архитектуры сети: одноранговая (Peer-to-peer ) и клиент/ сервер (Client/Server ), На данный момент архитектура клиент/сервер практически вытеснила одноранговую.

Если используется одноранговая сеть, то все компьютеры, входящие в нее, имеют одинаковые права. Соответственно, любой компьютер может выступать в роли сервера, предоставляющего доступ к своим ресурсам, или клиента, использующего ресурсы других серверов.

В сети, построенной на архитектуре клиент/сервер, существует несколько основных компьютеров - серверов. Остальные компьютеры, которые входят в сеть, носят название клиентов, или рабочих станций.

Сервер — это компьютер, который обслуживает другие компьютеры в сети. Существуют разнообразные виды серверов, отличающиеся друг от друга услугами, которые они предоставляют; серверы баз данных, файловые серверы, принт-серверы, почтовые серверы, веб-серверы и т. д.

Одноранговая архитектура получила распространение в небольших офисах или в домашних локальных сетях, В большинстве случаев, чтобы создать такую сеть, вам понадобится пара компьютеров, которые снабжены сетевыми картами, и кабель. В качестве кабеля используют витую пару четвертой или пятой категории. Витая пара получила такое название потому, что пары проводов внутри кабеля перекручены (это позволяет избежать помех и внешнего влияния ). Все еще можно встретить достаточно старые сети, которые используют коаксиальный кабель. Такие сети морально устарели, а скорость передачи информации в них не превышает 10 Мбит/с.

После того как сеть будет создана, а компьютеры соединены между собой, нужно настроить все необходимые параметры программно. Прежде всего убедитесь, что на соединяемых компьютерах были установлены операционные системы с поддержкой работы в сети (Linux, FreeBSD, Windows )

Все компьютеры в одноранговой сети объединяются в рабочие группы, которые имеют свои имена (идентификаторы ).
В случае использования архитектуры сети клиент/сервер управление доступом осуществляется на уровне пользователей. У администратора появляется возможность разрешить доступ к ресурсу только некоторым пользователям. Предположим, что вы делаете свой принтер доступным для пользователей сети. Если вы не хотите, чтобы кто угодно печатал на вашем принтере, то следует установить пароль для работы с этим ресурсом. При одноранговой сети любой пользователь, который узнает ваш пароль, сможет получить доступ к вашему принтеру. В сети клиент/ сервер вы можете ограничить использование принтера для некоторых пользователей вне зависимости от того, знают они пароль или нет.

Чтобы получить доступ к ресурсу в локальной сети, построенной на архитектуре клиент/сервер, пользователь обязан ввести имя пользователя (Login - логин) и пароль (Password). Следует отметить, что имя пользователя является открытой информацией, а пароль — конфиденциальной.

Процесс проверки имени пользователя называется идентификацией. Процесс проверки соответствия введенного пароля имени пользователя - аутентификацией. Вместе идентификация и аутентификация составляют процесс авторизации. Часто термин «аутентификация » — используется в широком смысле: для обозначения проверки подлинности.

Из всего сказанного можно сделать вывод о том, что единственное преимущество одноранговой архитектуры — это ее простота и невысокая стоимость. Сети клиент/сервер обеспечивают более высокий уровень быстродействия и защиты.
Достаточно часто один и тот же сервер может выполнять функции нескольких серверов, например файлового и веб-сервера. Естественно, общее количество функций, которые будет выполнять сервер, зависит от нагрузки и его возможностей. Чем выше мощность сервера, тем больше клиентов он сможет обслужить и тем большее количество услуг предоставить. Поэтому в качестве сервера практически всегда назначают мощный компьютер с большим объемом памяти и быстрым процессором (как правило, для решения серьезных задач используются многопроцессорные системы )

Оборудование для локальной сети

В самом простом случае для работы сети достаточно сетевых карт и кабеля. Если же вам необходимо создать достаточно сложную сеть, то понадобится специальное сетевое оборудование.

Кабель

Компьютеры внутри локальной сети соединяются с помощью кабелей, которые передают сигналы. Кабель, соединяющий два компонента сети (например, два компьютера ), называется сегментом. Кабели классифицируются в зависимости от возможных значений скорости передачи информации и частоты возникновения сбоев и ошибок. Наиболее часто используются кабели трех основных категорий:

  • Витая пара;
  • Коаксиальный кабель;
  • Оптоволоконный кабель,

Для построения локальных сетей сейчас наиболее широко используется витая пара . Внутри такой кабель состоит из двух или четырех пар медного провода, перекрученных между собой. Витая пара также имеет свои разновидности: UTP (Unshielded Twisted Pair - неэкранированная витая пара ) и STP (Shielded Twisted Pair - экранированная витая пара ). Эти разновидности кабеля способны передавать сигналы на расстояние порядка 100 м. Как правило, в локальных сетях используется именно UTP. STP имеет плетеную оболочку из медной нити, которая имеет более высокий уровень защиты и качества, чем оболочка кабеля UTP.

В кабеле STP каждая пара проводов дополнительно экранировала (она обернута слоем фольги ), что защищает данные, которые передаются, от внешних помех. Такое решение позволяет поддерживать высокие скорости передачи на более значительные расстояния, чем в случае использования кабеля UTP, Витая пара подключается к компьютеру с помощью разъема RJ-45 (Registered Jack 45 ), который очень напоминает телефонный разъем RJ-11 (Regi-steredjack ). Витая пара способна обеспечивать работу сети на скоростях 10,100 и 1000 Мбит/с.

Коаксиальный кабель состоит из медного провода, покрытого изоляцией, экранирующей металлической оплеткой и внешней оболочкой. По центральному проводу кабеля передаются сигналы, в которые предварительно были преобразованы данные. Такой провод может быть как цельным, так и многожильным. Для организации локальной сети применяются два типа коаксиального кабеля: ThinNet (тонкий, 10Base2 ) и ThickNet (толстый, 10Base5 ). В данный момент локальные сети на основе коаксиального кабеля практически не встречаются.

В основе оптоволоконного кабеля находятся оптические волокна (световоды), данные по которым передаются в виде импульсов света. Электрические сигналы по оптоволоконному кабелю не передаются, поэтому сигнал нельзя перехватить, что практически исключает несанкционированный доступ к данным. Оптоволоконный кабель используют для транспортировки больших объемов информации на максимально доступных скоростях.

Главным недостатком такого кабеля является его хрупкость: его легко повредить, а монтировать и соединять можно только с помощью специального оборудования.

Сетевые карты

Сетевые карты делают возможным соединение компьютера и сетевого кабеля. Сетевая карта преобразует информацию, которая предназначена для отправки, в специальные пакеты. Пакет - логическая совокупность данных, в которую входят заголовок с адресными сведениями и непосредственно информация. В заголовке присутствуют поля адреса, где находится информация о месте отправления и пункте назначения данных, Сетевая плата анализирует адрес назначения полученного пакета и определяет, действительно ли пакет направлялся данному компьютеру. Если вывод будет положительным, то плата передаст пакет операционной системе. В противном случае пакет обрабатываться не будет. Специальное программное обеспечение позволяет обрабатывает все пакеты, которые проходят внутри сети. Такую возможность используют системные администраторы, когда анализируют работу сети, и злоумышленники для кражи данных, проходящих по ней.

Любая сетевая карта имеет индивидуальный адрес, встроенный в ее микросхемы. Этот адрес называется физическим, или MAC-адресом (Media Access Control - управление доступом к среде передачи ).

Порядок действий, совершаемых сетевой картой, такой.

  1. Получение информации от операционной системы и преобразование ее в электрические сигналы для дальнейшей отправки по кабелю;
  2. Получение электрических сигналов по кабелю и преобразование их обратно в данные, с которыми способна работать операционная система;
  3. Определение, предназначен ли принятый пакет данных именно для этого компьютера;
  4. Управление потоком информации, которая проходит между компьютером и сетью.

Концентраторы

Концентратор (хаб ) — устройство, способное объединить компьютеры в физическую звездообразную топологию. Концентратор имеет несколько портов, позволяющих подключить сетевые компоненты. Концентратор, имеющий всего два порта, называют мостом. Мост необходим для соединения двух элементов сети.

Сеть вместе с концентратором представляет собой «общую шину ». Пакеты данных при передаче через концентратор будут доставлены на все компьютеры, подключенные к локальной сети.

Существует два вида концентраторов.

Пассивные концентраторы. Такие устройства отправляют полученный сигнал без его предварительной обработки.
Активные концентраторы (многопостовые повторители ). Принимают входящие сигналы, обрабатывают их и передают в подключенные компьютеры.

Коммутаторы

Коммутаторы необходимы для организации более тесного сетевого соединения между компьютером-отправителем и конечным компьютером. В процессе передачи данных через коммутатор в его память записывается информация о MAC-адресах компьютеров. С помощью этой информации коммутатор составляет таблицу маршрутизации, в которой для каждого из компьютеров указана его принадлежность определенному сегменту сети.

При получении коммутатором пакетов данных он создает специальное внутреннее соединение (сегмент ) между двумя своими Портами, используя таблицу маршрутизации. Затем отправляет пакет данных в соответствующий порт конечного компьютера, опираясь на информацию, описанную в заголовке пакета.

Таким образом, данное соединение оказывается изолированным от других портов, что позволяет компьютерам обмениваться информацией с максимальной скоростью, которая доступна для данной сети. Если у коммутатора присутствуют только два порта, он называется мостом.

Коммутатор предоставляет следующие возможности:

  • Послать пакет с данными с одного компьютера на конечный компьютер;
  • Увеличить скорость передачи данных.

Маршрутизаторы

Маршрутизатор по принципу работы напоминает коммутатор, однако имеет больший набор функциональных возможностей, Он изучает не только MAC, но и IP-адреса обоих компьютеров, участвующих в передаче данных. Транспортируя информацию между различными сегментами сети, маршрутизаторы анализируют заголовок пакета и стараются вычислить оптимальный путь перемещения данного пакета. Маршрутизатор способен определить путь к произвольному сегменту сети, используя информацию из таблицы маршрутов, что позволяет создавать общее подключение к Интернету или глобальной сети.
Маршрутизаторы позволяют произвести доставку пакета наиболее быстрым путем, что позволяет повысить пропускную способность больших сетей. Если какой-то сегмент сети перегружен, поток данных пойдет по другому пути,

Топология сети

Порядок расположения и подключения компьютеров и прочих элементов в сети называют сетевой топологией. Топологию можно сравнить с картой сети, на которой отображены рабочие станции, серверы и прочее сетевое оборудование. Выбранная топология влияет на общие возможности сети, протоколы и сетевое оборудование, которые будут применяться, а также на возможность дальнейшего расширения сети.

Физическая топология — это описание того, каким образом будут соединены физические элементы сети. Логическая топология определяет маршруты прохождения пакетов данных внутри сети.

Выделяют пять видов топологии сети:

  • Общая шина;
  • Звезда;
  • Кольцо;

Общая шина

В этом случае все компьютеры подключаются к одному кабелю, который называется шиной данных. При этом пакет будет приниматься всеми компьютерами, которые подключены к данному сегменту сети.

Быстродействие сети во многом определяется числом подключенных к общей шине компьютеров. Чем больше таких компьютеров, тем медленнее работает сеть. Кроме того, подобная топология может стать причиной разнообразных коллизий, которые возникают, когда несколько компьютеров одновременно пытаются передать информацию в сеть. Вероятность появления коллизии возрастает с увеличением количества подключенных к шине компьютеров.

Преимущества использования сетей с топологией «общая шина » следующие:

  • Значительная экономия кабеля;
  • Простота создания и управления.

Основные недостатки:

  • вероятность появления коллизий при увеличении числа компьютеров в сети;
  • обрыв кабеля приведет к отключению множества компьютеров;
  • низкий уровень защиты передаваемой информации. Любой компьютер может получить данные, которые передаются по сети.

Звезда

При использовании звездообразной топологии каждый кабельный сегмент, идущий от любого компьютера сети, будет подключаться к центральному коммутатору или концентратору, Все пакеты будут транспортироваться от одного компьютера к другому через это устройство. Допускается использование как активных, так и пассивных концентраторов, В случае разрыва соединения между компьютером и концентратором остальная сеть продолжает работать. Если же концентратор выйдет из строя, то сеть работать перестанет. С помощью звездообразной структуры можно подключать друг к другу даже локальные сети.

Использование данной топологии удобно при поиске поврежденных элементов: кабеля, сетевых адаптеров или разъемов, «Звезда » намного удобнее «общей шины » и в случае добавления новых устройств. Следует учесть и то, что сети со скоростью передачи 100 и 1000 Мбит/с построены по топологии «звезда ».

Если в самом центре «звезды » расположить концентратор, то логическая топология изменится на «общую шину».
Преимущества «звезды »:

  • простота создания и управления;
  • высокий уровень надежности сети;
  • высокая защищенность информации, которая передается внутри сети (если в центре звезды расположен коммутатор ).

Основной недостаток - поломка концентратора приводит к прекращению работы всей сети.

Кольцевая топология

В случае использования кольцевой топологии все компьютеры сети подключаются к единому кольцевому кабелю. Пакеты проходят по кольцу в одном направлении через все сетевые платы подключенных к сети компьютеров. Каждый компьютер будет усиливать сигнал и отправлять его дальше по кольцу.

В представленной топологии передача пакетов по кольцу организована маркерным методом. Маркер представляет собой определенную последовательность двоичных разрядов, содержащих управляющие данные. Если сетевое устройство имеет маркер, то у него появляется право на отправку информации в сеть. Внутри кольца может передаваться всего один маркер.

Компьютер, который собирается транспортировать данные, забирает маркер из сети и отправляет запрошенную информацию по кольцу. Каждый следующий компьютер будет передавать данные дальше, пока этот пакет не дойдет до адресата. После получения адресат вернет подтверждение о получении компьютеру-отправителю, а последний создаст новый маркер и вернет его в сеть.

Преимущества данной топологии следующие:

  • эффективнее, чем в случае с общей шиной, обслуживаются большие объемы данных;
  • каждый компьютер является повторителем: он усиливает сигнал перед отправкой следующей машине, что позволяет значительно увеличить размер сети;
  • возможность задать различные приоритеты доступа к сети; при этом компьютер, имеющий больший приоритет, сможет дольше задерживать маркер и передавать больше информации.

Недостатки:

  • обрыв сетевого кабеля приводит к неработоспособности всей сети;
  • произвольный компьютер может получить данные, которые передаются по сети.

Протоколы TCP/IP

Протоколы TCP/IP (Transmission Control Protocol/Internet Protocol — Протокол управления передачей данных/Интернет протокол ) являются основными межсетевыми протоколами и управляют передачей данных между сетями разной конфигурации и технологии. Именно это семейство протоколов используется для передачи информации в сети Интернет, а также в некоторых локальных сетях. Семейство протоколов TPC/IP включает все промежуточные протоколы между уровнем приложений и физическим уровнем. Общее их количество составляет несколько десятков.

Основными среди них являются:

  • Транспортные протоколы: TCP — Transmission Control Protocol (протокол управления передачей данных ) и другие — управляют передачей данных между компьютерами;
  • Протоколы маршрутизации: IP — Internet Protocol (протокол Интернета ) и другие — обеспечивают фактическую передачу данных, обрабатывают адресацию данных, определяет наилучший путь к адресату;
  • Протоколы поддержки сетевого адреса: DNS — Domain Name System (доменная система имен ) и другие — обеспечивает определение уникального адреса компьютера;
  • Протоколы прикладных сервисов: FTP — File Transfer Protocol (протокол передачи файлов ), HTTP — HyperText Transfer Protocol (Протокол передачи гипертекста), TELNET и другие — используются для получения доступа к различным услугам: передаче файлов между компьютерами, доступу к WWW, удаленному терминальному доступу к системе и др.;
  • Шлюзовые протоколы: EGP — Exterior Gateway Protocol (внешний шлюзовый протокол ) и другие — помогают передавать по сети сообщения о маршрутизации и информацию о состоянии сети, а также обрабатывать данные для локальных сетей;
  • Почтовые протоколы: POP — Post Office Protocol (протокол приема почты ) — используется для приема сообщений электронной почты, SMPT Simple Mail Transfer Protocol (протокол передачи почты ) — используется для передачи почтовых сообщений.

Все основные сетевые протоколы (NetBEUI, IPX/SPX и ТСРIР ) являются маршрутизируемыми протоколами. Но вручную приходится настраивать лишь маршрутизацию ТСРIР. Остальные протоколы маршрутизируются операционной системой автоматически.

IP-адресация

При построении локальной сети на основе протокола TCP/IP каждый компьютер получает уникальный IP-адрес, который может назначаться либо DHCP-сервером — специальной программой, установленной на одном из компьютеров сети, либо средствами Windows, либо вручную.

DHCP-сервер позволяет гибко раздавать IP-адреса компьютерам и закрепить за некоторыми компьютерами постоянные, статические IP-адреса. Встроенное средство Windows не имеет таких возможностей. Поэтому если в сети имеется DHCP-сервер, то средствами Windows лучше не пользоваться, установив в настройках сети операционной системы автоматическое (динамическое ) назначение IP-адреса. Установка и настройка DHCP-сервера выходит за рамки этой книги.

Следует, однако, отметить, что при использовании для назначения IP-адреса DHCP-сервера или средств Windows загрузка компьютеров сети и операции назначения IP-адресов требует длительного времени, тем большего, чем больше сеть. Кроме того, компьютер с DHCP-сервером должен включаться первым.
Если же вручную назначить компьютерам сети статические (постоянные, не изменяющиеся ) IP-адреса, то компьютеры будут загружаться быстрее и сразу же появляться в сетевом окружении. Для небольших сетей этот вариант является наиболее предпочтительным, и именно его мы будем рассматривать в данной главе.

Для связки протоколов TCP/IP базовым является протокол IP, так как именно он занимается перемещением пакетов данных между компьютерами через сети, использующие различные сетевые технологии. Именно благодаря универсальным характеристикам протокола IP стало возможным само существование Интернета, состоящего из огромного количества разнородных сетей.

Пакеты данных протокола IP

Протокол IP является службой доставки для всего семейства протоколов ТСР-iР. Информация, поступающая от остальных протоколов, упаковывается в пакеты данных протокола IP, к ним добавляется соответствующий заголовок, и пакеты начинают свое путешествие по сети

Система IP-адресации

Одними из важнейших полей заголовка пакета данных IP являются адреса отправителя и получателя пакета. Каждый IP-адрес должен быть уникальным в том межсетевом объединении, где он используется, чтобы пакет попал по назначению. Даже во всей глобальной сети Интернет невозможно встретить два одинаковых адреса.

IP-адрес, в отличие от обычного почтового адреса, состоит исключительно из цифр. Он занимает четыре стандартные ячейки памяти компьютера — 4 байта. Так как один байт (Byte) равен 8 бит (Bit), то длина IP-адреса составляет 4 х 8 = 32 бита.

Бит представляет собой минимально возможную единицу хранения информации. В нем может содержаться только 0 (бит сброшен ) или 1 (бит установлен ).

Несмотря на то, что IP-адрес всегда имеет одинаковую длину, записывать его можно по-разному. Формат записи IP-адреса зависит от используемой системы счисления. При этом один и тот же адрес может выглядеть совершенно по-разному:

Формат числовой записи

Значение

Двоичный (Binary)

Шестнадцатеричный (Hexadecimal)

0x86180842

Десятичный (Decimal)

2249721922

Точечно-десятичный (Dotted Decimal)

134.24.8.66

Двоичное число 10000110 преобразовывается в десятичное следующим образом: 128 + 0 + 0 + 0 + 0 + 4 + 2 + 0 =134.
Наиболее предпочтительным вариантом, с точки зрения удобства чтения человеком, является формат написания IP-адреса в точечно-десятичной нотации. Данный формат состоит из четырех десятичных чисел, разделенных точками. Каждое число, называемое октетом (Octet), представляет собой десятичное значение соответствующего байта в IP-адресе. Октет называется так потому, что один байт в двоичном виде состоит из восьми бит.

При использовании точечно-десятичной нотации записи октетов в адресе IP следует иметь в виду следующие правила:

  • Допустимыми являются только целые числа;
  • Числа должны находиться в диапазоне от 0 до 255.

Старшие биты в IP-адресе, расположенные слева, определяют класс и номер сети. Их совокупность называется идентификатором подсети или сетевым префиксом. При назначении адресов внутри одной сети префикс всегда остается неизменным. Он идентифицирует принадлежность IP-адреса данной сети.

Например, если IP-адреса компьютеров подсети 192.168.0.1 — 192.168.0.30, то первые два октета определяют идентификатор подсети — 192.168.0.0, а следующие два — идентификаторы хостов.

Сколько именно бит используется в тех или иных целях, зависит от класса сети. Если номер хоста равен нулю, то адрес указывает не на какой-то один конкретный компьютер, а на всю сеть в целом.

Классификация сетей

Существует три основных класса сетей: А, В, С. Они отличаются друг от друга максимально возможным количеством хостов, которые могут быть подключены к сети данного класса.

Общепринятая классификация сетей приведена в следующей таблице, где указано наибольшее количество сетевых интерфейсов, доступных для подключения, какие октеты IP-адреса используются для сетевых интерфейсов (*), а какие - остаются неизменяемыми (N).

Класс сети

Наибольшее количество хостов

Изменяемые октеты IP — адреса , используемые для нумерации хостов

16777214

N *.*.*

65534

N.N.*.*

N.N.N.*

Например, в сетях наиболее распространенного класса С не может быть более 254 компьютеров, поэтому для нумерации сетевых интерфейсов используется только один, самый младший байт IP-адреса. Этому байту соответствует крайний правый октет в точечно-десятичной нотации.

Возникает законный вопрос: почему к сети класса С можно подключить только 254 компьютера, а не 256? Дело в том, что некоторые внутрисетевые адреса IP предназначены для специального использования, а именно:

О — идентифицирует саму сеть;
255 — широковещательный.

Сегментирование сетей

Адресное пространство внутри каждой сети допускает разбиение на более мелкие по количеству хостов подсети (Subnets ). Процесс разбиения на подсети называется также сегментированием.

Например, если сеть 192.168.1.0 класса С разбить на четыре подсети, то их адресные диапазоны будут следующими:

  • 192.168.1.0-192.168.1.63;
  • 192.168.1.64-192.168.1.127;
  • 192.168.1.128-192.168.1.191;
  • 192.168.1.192-192.168.1.255.

В данном случае для нумерации хостов используется не весь правый октет из восьми бит, а только 6 младших из них. А два оставшихся старших бита определяют номер подсети, который может принимать значения от нуля до трех.

Как обычный, так и расширенный сетевые префиксы можно идентифицировать с помощью маски подсети (Subnet Mask ), которая позволяет также отделить в IP-адресе идентификатор подсети от идентификатора хоста, маскируя с помощью числа ту часть IP-адреса, которая идентифицирует подсеть.

Маска представляет собой комбинацию чисел, по внешнему виду напоминающую IP-адрес. Двоичная запись маски подсети содержит нули в разрядах, интерпретируемых как номер хоста. Остальные биты, установленные в единицу, указывают на то, что эта часть адреса является префиксом. Маска подсети всегда применяется в паре с IP-адресом.

При отсутствии дополнительного разбиения на подсети, маски стандартных классов сетей имеют следующие значения:

Класс сети

Маска

двоичная

точечно-десятичная

11111111.00000000.00000000.00000000

255.0.0.0

11111111.11111111.00000000.00000000

255.255.0.0

11111111.11111111.11111111.00000000

255.255.255.0

Когда используется механизм разбиения на подсети, маска соответствующим образом изменяется. Поясним это, используя уже упомянутый пример с разбиением сети класса С на четыре подсети.

В данном случае два старших бита в четвертом октете IP-адреса используются для нумерации подсетей. Тогда маска в двоичной форме будет выглядеть следующим образом: 11111111.11111111.11111111.11000000, а в точечно-десятичной -255.255.255.192.

Диапазоны адресов частных сетей

Каждый компьютер, подключенный к сети, имеет свой уникальный IP-адрес. Для некоторых машин, например, серверов, этот адрес не изменяется. Такой постоянный адрес называется статическим (Static). Для других, например, клиентов, IP-адрес может быть постоянным (статическим) или назначаться динамически, при каждом подключении к сети.

Чтобы получить уникальный статический, то есть постоянный адрес IP в сети Интернет, нужно обратиться в специальную организацию InterNIC — Internet Network Information Center (Сетевой информационный центр Интернета ). InterNIC назначает только номер сети, а дальнейшей работой по созданию подсетей и нумерации хостов сетевой администратор должен заниматься самостоятельно.

Но официальная регистрация в InterNIC с целью получения статического IP-адреса обычно требуется для сетей, имеющих постоянную связь с Интернетом. Для частных сетей, не входящих в состав Интернета, специально зарезервировано несколько блоков адресного пространства, которые можно свободно, без регистрации в InterNIC, использовать для присвоения IP-адресов:

Класс сети

Количество доступных номеров сетей

Диапазоны IP — адресов , используемые для нумерации хостов

10.0.0.0 — 10.255.255.255

172.16.0.0-172.31.255.255

192.168.0.О-192.168.255.255

LINKLOCAL

169.254.0.0-169.254.255.255

Однако эти адреса используются только для внутренней адресации сетей и не предназначены для хостов, которые напрямую соединяются с Интернетом.

Диапазон адресов LINKLOCAL не является классом сети в обычном понимании. Он используется Windows при автоматическом назначении личных адресов IP компьютерам в локальной сети.

Надеюсь Вы теперь имеете представление о локальной сети!

Рассказать друзьям